ITU-Rpy documentation¶
ITU-Rpy is a python implementation of the ITU-R P. Recommendations to compute atmospheric attenuation in slant and horizontal paths.
- A complete overview of the contents of this documentation can be found in the Table of Contents at the bottom of this page.
- Instructions on how to install ITU-Rpy are located at the Installation page.
- Results of running ITU-Rpy against the validation examples provided by the ITU (where available) are available at the Validation page.
Citation¶
If you use ITU-Rpy in one of your research projects, please cite it as:
@misc{iturpy-2017,
title={ITU-Rpy: A python implementation of the ITU-R P. Recommendations to compute
atmospheric attenuation in slant and horizontal paths.},
author={Inigo del Portillo},
year={2017},
publisher={GitHub},
howpublished={\url{https://github.com/inigodelportillo/ITU-Rpy/}}
}
Usage and examples¶
The Quick Start guide provides different examples on how to use ITUR-py.
Additional examples can be found in the examples folder, and the snippet of code below.
import itur
f = 22.5 * itur.u.GHz # Link frequency
D = 1 * itur.u.m # Size of the receiver antenna
el = 60 # Elevation angle constant of 60 degrees
p = 3 # Percentage of time that attenuation values are exceeded.
# Generate a regular grid latitude and longitude points with 1 degrees resolution
lat, lon = itur.utils.regular_lat_lon_grid()
# Comute the atmospheric attenuation
Att = itur.atmospheric_attenuation_slant_path(lat, lon, f, el, p, D)
itur.plotting.plot_in_map(Att.value, lat, lon,
cbar_text='Atmospheric attenuation [dB]')
which produces

Atmospheric attenuation worldmap @ 22.5 GHz.
Table of Contents¶
Installation¶
Installation from pypi¶
To install ITU-Rpy from pypi, please use the following command on the command line:
pip install itur
Manual Installation¶
To install the development version of ITU-Rpy, please type the following commands on the command line:
git clone https://github.com/inigodelportillo/ITU-Rpy
cd ITU-Rpy
pip install -U -r requirements.txt
python setup.py install
Installing Cartopy¶
Cartopy can be used to plot results in maps. Installation of Cartopy is optional, and ITU-Rpy will still work without it. However, some plotting capabilities will be deactivated. A quick overview of Cartopy if provided below:
Cartopy is a Python package designed for geospatial data processing in order to produce maps and other geospatial data analyses. Cartopy has the ability to transform points, lines, vectors, polygons and images between different projections, and it can be combined with Matplotlib to plot contours, images, vectors, lines or points in the transformed coordinates.
To install Cartopy from pypi, please use the following command on the command line:
pip install cartopy
If that does not work, you can try to download it using conda:
conda -c conda-forge install cartopy
If you are using Windows, you can also install cartopy using the appropriate pre-compiled wheels file from this webpage. After downloading the .whl file, cartopy can be installed running:
pip install name_of_whl_file.whl
Quick Start¶
If you have not installed ITU-Rpy yet take a look at the installation instructions and make sure that all the requirements are fulfilled. Examples to illustrate the usage of ITU-Rpy are provided in the examples-folder. In order to understand the models used, check the models section .
To get started, we will walk you through a few examples that show the most illustrative case studies for
- First, we explain the basic usage of ITU-Rpy by computing the attenuation at a single location.
- Second, we explain the usage of ITU-Rpy using vectorized operations.
- Finally, we summarize other useful atmospheric functions in the library. The complete API description can be accessed through the API section .
Single location attenuation¶
Here we will compute the link attenuation vs. at a frequency of 22.5 GHz for a link between a satellite in GEO at the orbital slot 77 W and a ground station in Boston.
In addition, we will show how to compute other parameters of interest such as 0 degree isotherm, rainfall intensity exceeded during 0.01 % of the time, total columnar content liquid water or temperature.
First, let’s define the coordinates of our ground station and compute the elevation angle of the link
import itur
import astropy.units as u
# Ground station coordinates (Boston)
lat_GS = 42.3601
lon_GS = -71.0942
# Satellite coordinates (GEO, 77 W)
lat_sat = 0
lon_sat = -77
h_sat = 35786 * u.km
# Compute the elevation angle between satellite and ground station
el = itur.utils.elevation_angle(h_sat, lat_sat, lon_sat, lat_GS, lon_GS)
Next, we define the link parameters
f = 22.5 * u.GHz # Link frequency
D = 1.2 * u.m # Antenna diameters
Finally, we compute the total atmospheric attenuation as well as the different contributions for a set of unavailability values and plot the results. Note the flag return_contributions = True when calling function itur.atmospheric_attenuation_slant_path.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
# Define unavailabilities vector
unavailabilities = np.logspace(-1.5, 1.5, 100)
# Compute the
A_g, A_c, A_r, A_s, A_t = [], [], [], [], []
for p in unavailabilities:
a_g, a_c, a_r, a_s, a_t = itur.atmospheric_attenuation_slant_path(lat_GS, lon_GS,
f, el, p, D,
return_contributions=True)
A_g.append(a_g.value)
A_c.append(a_c.value)
A_r.append(a_r.value)
A_s.append(a_s.value)
A_t.append(a_t.value)
# Plot the results
ax = plt.subplot(1,1,1)
ax.semilogx(unavailabilities, A_g, label='Gaseous attenuation')
ax.semilogx(unavailabilities, A_c, label='Cloud attenuation')
ax.semilogx(unavailabilities, A_r, label='Rain attenuation')
ax.semilogx(unavailabilities, A_s, label='Scintillation attenuation')
ax.semilogx(unavailabilities, A_t, label='Total atmospheric attenuation')
ax.xaxis.set_major_formatter(ScalarFormatter())
ax.set_xlabel('Percentage of time attenuation value is exceeded [%]')
ax.set_ylabel('Attenuation [dB]')
ax.grid(which='both', linestyle=':')
plt.legend()
which results in the following plot image:
Note the by default, ITU-Rpy returns Quantity type objects, which are based on astropy.units module. Quantity objects are special objects that contain a value and unit attributes. Conversion among units is possible using the .to() method.
Atmospheric parameters such as temperature, pressure, or water-vapor density can be passed to function itur.atmospheric_attenuation_slant_path manually if known, otherwise ITU-Rpy will compute them automatically using the appropriate ITU Recommendation models. Similarly, if the ground station height above mean sea level is known, it can also be introduced manually.
Vectorial operations¶
One of the main characteristics of ITU-Rpy is that it allows for broadcasting of operations when using vectors. This allows for several use cases.
Multiple cities¶
First, we might be interested in computing the atmospheric attenuation values exceeded for 0.1 % of the time for a bunch of locations. This can be done as:
import itur
cities = {'Boston': (42.36, -71.06),
'New York': (40.71, -74.01),
'Los Angeles': (34.05, -118.24),
'Denver': (39.74, -104.99),
'Las Vegas': (36.20, -115.14),
'Seattle': (47.61, -122.33),
'Washington DC': (38.91, -77.04)}
lat = [coords[0] for coords in cities.values()]
lon = [coords[1] for coords in cities.values()]
# Satellite coordinates (GEO, 4 E)
lat_sat = 0
lon_sat = -77
h_sat = 35786 * itur.u.km
# Compute the elevation angle between satellite and ground stations
el = itur.utils.elevation_angle(h_sat, lat_sat, lon_sat, lat, lon)
# Set the link parameters
f = 22.5 * itur.u.GHz # Link frequency
D = 1.2 * itur.u.m # Antenna diameters
p = 0.1 # Unavailability (Values exceeded 0.1% of time)
# Compute the atmospheric attenuation
Ag, Ac, Ar, As, Att = itur.atmospheric_attenuation_slant_path(
lat, lon, f, el, p, D, return_contributions=True)
and we can plot the results
# Plot the results
city_idx = np.arange(len(cities))
width = 0.15
fig, ax = plt.subplots(1, 1)
ax.bar(city_idx, Att.value, 0.6, label='Total atmospheric Attenuation')
ax.bar(city_idx - 1.5 * width, Ar.value, width, label='Rain attenuation')
ax.bar(city_idx - 0.5 * width, Ag.value, width, label='Gaseous attenuation')
ax.bar(city_idx + 0.5 * width, Ac.value, width, label='Clouds attenuation')
ax.bar(city_idx + 1.5 * width, As.value, width,
label='Scintillation attenuation')
# Set the labels
ticks = ax.set_xticklabels([''] + list(cities.keys()))
for t in ticks:
t.set_rotation(45)
ax.set_ylabel('Atmospheric attenuation exceeded for 0.1% [dB]')
# Format image
ax.yaxis.grid(which='both', linestyle=':')
ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.3), ncol=2)
plt.tight_layout(rect=(0, 0, 1, 0.85))
Attenuation over regions of the Earth¶
A second use case for vectorization is computation of the atmospheric attenuation (and other parameters) over large geographical regions. Let’s say that we want to compute the attenuation over Africa of a new Ka-band satellite located in GEO at slot 4 E.
import itur
import astropy.units as u
# Generate regular grid of latitude and longitudes with 1 degree resolution
lat, lon = itur.utils.regular_lat_lon_grid(lat_max=60,
lat_min=-60,
lon_max=65,
lon_min=-35)
# Satellite coordinates (GEO, 4 E)
lat_sat = 0
lon_sat = 4
h_sat = 35786 * u.km
# Compute the elevation angle between satellite and ground station
el = itur.utils.elevation_angle(h_sat, lat_sat, lon_sat, lat, lon)
f = 22.5 * u.GHz # Link frequency
D = 1.2 * u.m # Antenna diameters
p = 1 # Unavailability (Values exceeded 1% of time)
Att = itur.atmospheric_attenuation_slant_path(lat, lon, f, el, p, D)
If you have installed Basemap (see installation instructions ), you can use function itur.plotting.plot_in_map() to display the results as an image:
# Plot the results
m = itur.plotting.plot_in_map(Att.value, lat, lon,
cbar_text='Atmospheric attenuation [dB]',
cmap='magma')
# Plot the satellite location
m.scatter(lon_sat, lat_sat, c='white', s=20)
Dependency with link parameters¶
Vectorization works in a lot of different ways. For example, let’s say that we want to compute the dependency of the attenuation with the elevation angle for a the example presented in the `Single location attenuation example <>`_. We can just do it using the code below
import itur
import astropy.units as u
itur.deactivate_output_quantity()
# Ground station coordinates (Boston)
lat_GS = 42.3601
lon_GS = -71.0942
# Vectorize the elevation angle
el = np.linspace(10, 90, 50)
f = 22.5 * u.GHz # Link frequency
D = 1.2 * u.m # Antenna diameters
p = 1 # Unavailability (Values exceeded 1% of time)
Att = itur.atmospheric_attenuation_slant_path(lat_GS, lon_GS, f, el, p, D)
plt.figure()
plt.plot(el, Att.value)
plt.xlabel('Elevation angle [deg]')
plt.ylabel('Attenuation [dB]')
plt.grid(which='major', linestyle=':')
Another example of vectorization can be found below in the code to plot the atmospheric attenuation due to gases vs. frequency.
import itur
import astropy.units as u
import numpy as np
el = 90
rho = 7.5 * u.g / u.m**3
P = 1013 * u.hPa
T = 25 * u.deg_C
f = np.linspace(1, 350, 1000)
Att = itur.gaseous_attenuation_slant_path(f, el, rho, P, T)
plt.semilogy(f, Att)
plt.xlabel('Frequency [GHz]')
plt.ylabel('Gaseous Attenuation [dB]')
plt.grid(which='both', linestyle=':')
The only parameter that cannot be vectorized is the unavailability - percentage of time that values are exceeded. A for loop needs always to be used to compute attenuation values for different unavailabilities (p), as was shown in the `Single location attenuation example <>`_.
Other atmospheric functions¶
We conclude the quickstart with a summary of other functions included in ITU-Rpy that might be useful to compute atmospheric attenuation related parameters. The complete API description can be accessed through the API section .
import itur
# Location of the receiver ground stations
lat = 41.39
lon = -71.05
# Link parameters
el = 60 # Elevation angle equal to 60 degrees
f = 22.5 * itur.u.GHz # Frequency equal to 22.5 GHz
D = 1 * itur.u.m # Receiver antenna diameter of 1 m
p = 0.1 # We compute values exceeded during 0.1 % of the average
# year
# Compute atmospheric parameters
hs = itur.topographic_altitude(lat, lon)
T = itur.surface_mean_temperature(lat, lon)
P = itur.standard_pressure(lat, hs)
rho_p = itur.surface_water_vapour_density(lat, lon, p, hs)
rho_sa = itur.models.itu835.water_vapour_density(lat, hs)
T_sa = itur.models.itu835.temperature(lat, hs)
V = itur.models.itu836.total_water_vapour_content(lat, lon, p, hs)
# Compute rain and cloud-related parameters
R_prob = itur.models.itu618.rain_attenuation_probability(lat, lon, el, hs)
R_pct_prob = itur.models.itu837.rainfall_probability(lat, lon)
R001 = itur.models.itu837.rainfall_rate(lat, lon, p)
h_0 = itur.models.itu839.isoterm_0(lat, lon)
h_rain = itur.models.itu839.rain_height(lat, lon)
L_red = itur.models.itu840.columnar_content_reduced_liquid(lat, lon, p)
A_w = itur.models.itu676.zenit_water_vapour_attenuation(lat, lon, p, f, alt=hs)
# Compute attenuation values
A_g = itur.gaseous_attenuation_slant_path(f, el, rho_p, P, T)
A_r = itur.rain_attenuation(lat, lon, f, el, hs=hs, p=p)
A_c = itur.cloud_attenuation(lat, lon, el, f, p)
A_s = itur.scintillation_attenuation(lat, lon, f, el, p, D)
A_t = itur.atmospheric_attenuation_slant_path(lat, lon, f, el, p, D)
Running the code above produces the following results. The ITU Recommendation where the variable or the procedure to compute it is referred appears in square brackets.
The ITU recommendations predict the following values for the point located
at coordinates (41.39, -71.05)
- Height above the sea level [ITU-R P.1511] 22.9 m
- Surface mean temperature [ITU-R P.1510] 9.4 deg_C
- Surface pressure [ITU-R P.835] 1005.4 hPa
- Standard surface temperature [ITU-R P.835] 13.6 deg_C
- Standard water vapour density [ITU-R P.835] 8.9 g / m3
- Water vapor density (p=0.1%) [ITU-R P.836] 20.3 g / m3
- Total water vapour content (p=0.1%) [ITU-R P.836] 54.6 kg / m2
- Rain attenuation probability [ITU-R P.618] 9.6 %
- Rain percentage probability [ITU-R P.837] 7.8 %
- Rainfall rate exceeded for p=0.1% [ITU-R P.837] 12.9 mm / h
- 0 degree C isotherm height [ITU-R P.839] 3.2 km
- Rain height [ITU-R P.839] 3.5 km
- Columnar content of reduced liquid (p=0.1%) [ITU-R P.840] 3.0 kg / m2
- Zenit water vapour attenuation (p=0.1%) [ITU-R P.676] 1.5 dB
Attenuation values exceeded for p=0.1% of the average year for a link with el=60 deg, f=22.5 GHz,
D=1.0 m and receiver ground station located at coordinates (41.39, -71.05)
- Rain attenuation [ITU-R P.618] 8.2 dB
- Gaseous attenuation [ITU-R P.676] 1.5 dB
- Clouds attenuation [ITU-R P.840] 1.6 dB
- Scintillation attenuation [ITU-R P.618] 0.3 dB
- Total atmospheric attenuation [ITU-R P.618] 10.8 dB
API Documentation¶
ITU-Rpy
Contents¶
itur package¶
Package contents¶
ITU-RPy is a python implementation of the ITU-P R Recommendations.
ITU-Rpy can be used to compute atmospheric attenuation for Earth-to-space and horizontal paths, for frequencies in the GHz range.
The propagation loss on an Earth-space path and a horizontal-path, relative to the free-space loss, is the sum of different contributions, namely:
- attenuation by atmospheric gases;
- attenuation by rain, other precipitation and clouds;
- scintillation and multipath effects;
- attenuation by sand and dust storms.
Each of these contributions has its own characteristics as a function of frequency, geographic location and elevation angle. ITU-Rpy allows for fast, vectorial computation of the different contributions to the atmospheric attenuation.
-
itur.
atmospheric_attenuation_slant_path
(lat, lon, f, el, p, D, hs=None, rho=None, R001=None, eta=0.5, T=None, H=None, P=None, hL=1000.0, Ls=None, tau=45, V_t=None, mode='approx', return_contributions=False, include_rain=True, include_gas=True, include_scintillation=True, include_clouds=True)[source]¶ Calculate long-term atmospheric attenuation statistics for slant paths.
This function provides estimates of the long-term statistics of the slant-path atmospheric attenuation at a given location, for frequencies up to 55 GHz and percentages of time 0.001% < p < 50%.
The model used is based on the guidelines provided in Section 2 of ITU-R P.618. If optional values are not provided they will be automatically computed using the procedures described in other ITU-R P. recommendations.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- f (number or Quantity) – Frequency (GHz)
- el (sequence, number or Quantity) – Elevation angle (degrees)
- p (number) – Percentage of the time the rain attenuation value is exceeded.
- D (number or Quantity) – Physical diameter of the earth-station antenna (m)
- hs (number, sequence, or numpy.ndarray, optional) – Height above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
- rho (number or Quantity, optional) – Water vapor density (g/m3). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.836.
- R001 (number or Quantity, optional) –
Point rainfall rate for the location for 0.01% of an average year (mm/h). If not provided, an estimate is obtained from Recommendation ITU-R P.837. Some useful values:
- 0.25 mm/h : Drizzle
- 2.5 mm/h : Light rain
- 12.5 mm/h : Medium rain
- 25.0 mm/h : Heavy rain
- 50.0 mm/h : Downpour
- 100 mm/h : Tropical
- 150 mm/h : Monsoon
- eta (number, optional) – Antenna efficiency. Default value 0.5 (conservative estimate)
- T (number, sequence, or numpy.ndarray, optional) – Average surface ambient temperature (°C) at the site. If None, uses the ITU-R P.1510 to estimate the surface ambient temperature.
- H (number, sequence, or numpy.ndarray, optional) – Average surface relative humidity (%) at the site. If None, uses the ITU-R P.836 to estimate the wet term of the surface relative humidity.
- P (number, sequence, or numpy.ndarray, optional) – Average surface pressure (hPa) at the site. If None, uses the ITU-R P.835 to estimate the average surface pressure.
- hL (number, optional) – Height of the turbulent layer (m). Default value 1000 m
- Ls (number, optional) – Slant path length (km). If not provided, it will be computed using the rain height and the elevation angle. The ITU model does not require this parameter as an input.
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
- V_t (number or Quantity, optional) – Integrated water vapour content along the path (kg/m2 or mm). If not provided this value is estimated using Recommendation ITU-R P.836. Default value None
- mode (string, optional) – Mode for the calculation of gaseous attenuation. Valid values are ‘approx’, ‘exact’. If ‘approx’ Uses the method in Annex 2 of Recommendation ITU-R P.676, else uses the method described in Section 1. Default, ‘approx’
- return_contributions (bool, optional) – Determines whether individual contributions from gases, rain, clouds and scintillation are returned in addition to the total attenuation (True), or just the total atmospheric attenuation (False). Default is False
- include_rain (bool, optional) – Determines whether to include the rain contribution in the total atmospheric attenuation calculation or not. Default is True
- include_gas (bool, optional) – Determines whether to include the gaseous contribution in the total atmospheric attenuation calculation or not. Default is True
- include_scintillation (bool, optional) – Determines whether to include the scintillation contribution in the total atmospheric attenuation calculation or not. Default is True
- include_clouds (bool, optional) – Determines whether to include the clouds contribution in the total atmospheric attenuation calculation or not. Default is True
Returns: - A (Quantity) – Total atmospheric attenuation (dB)
- Ag, Ac, Ar, As, A (tuple) – Gaseous, Cloud, Rain, Scintillation contributions to total attenuation, and total attenuation (dB)
References
[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf
itur.utils package¶
itur.utils
is a utilities library for ITU-Rpy.
This utility library for ITU-Rpy contains methods to: * Load data and build an interpolator object. * Prepare the input and output arrays, and handle unit transformations. * Compute distances and elevation angles between two points on Earth and or space.
-
itur.utils.
load_data_interpolator
(path_lat, path_lon, path_data, interp_fcn, flip_ud=True)[source]¶ Load a lat-lon tabulated dataset and build an interpolator.
Parameters: - path_lat (string) – Path for the file containing the latitude values
- path_lon (string) – Path for the file containing the longitude values
- path_data (string) – Path for the file containing the data values
- interp_fcn (string) – The interpolation function to be used
- flip_ud (boolean) – Whether to flip the latitude and data arrays along the first axis. This is an artifact of the format that the ITU uses to encode its data, which is inconsistent across recommendations (in some recommendations, latitude are sorted in ascending order, in others they are sorted in descending order).
Returns: interp – An interpolator that given a latitude-longitude pair, returns the data value
Return type: interp_fcn
-
itur.utils.
load_data
(path, is_text=False, **kwargs)[source]¶ Load data files from ./itur/data/.
Loads data from a comma-separated values file. The contents of the file can be numeric or text-based.
Parameters: - path (string) – Path of the data to load
- is_text (bool) – Indicates whether the data is text (True) or numerical (False). Default value is False.
Returns: data – Numpy-array with the data. Numerical data is returned as a float
Return type: numpy.ndarray
-
itur.utils.
get_input_type
(inpt)[source]¶ Return the type of the input.
If the input is an object of type Quantity, it returns the type of the associated value
Parameters: inpt (object) – The input object. Returns: type – The type of the input. Return type: type
-
itur.utils.
prepare_input_array
(input_array)[source]¶ Format an array to be a 2-D numpy-array.
If the contents of input_array are 0-D or 1-D, it converts is to an array with at least two dimensions.
Parameters: input_array (numpy.ndarray, sequence, or number) – The input value. It can be a scalar, 1-D array, or 2-D array. Returns: output_array – An 2-D numpy array with the input values Return type: numpy.ndarray
-
itur.utils.
prepare_output_array
(output_array, type_input=None)[source]¶ Format the output to have the same shape and type as the input.
This function is a generic wrapper to format the output of a function to have the same type as the input. ITU-Rpy makes extensive use of numpy arrays, but uses this function to return outputs having the same type that was provided in the input of the function.
-
itur.utils.
prepare_quantity
(value, units=None, name_val=None)[source]¶ Convert the input to the required units.
The function verifies that the input has the right units and converts it to the desired units. For example, if a value is introduced in km but posterior frequencies require this value to be in meters, this function would be called with units=u.m
Parameters: - value (astropy.units.Quantity, number, sequence, or np.ndarry) – The input value
- units (astropy.units) – Desired units of the output
- name_val (string) – Name of the variable (for debugging purposes)
Returns: q – An numpy array with the values converted to the desired units.
Return type: numpy.ndarray
-
itur.utils.
compute_distance_earth_to_earth
(lat_p, lon_p, lat_grid, lon_grid, method=None)[source]¶ Compute the distance between a point and a matrix of (lat, lons).
If the number of elements in lat_grid is smaller than 100,000, uses the WGS84 method, otherwise, uses the Haversine formula.
Parameters: - lat_p (number) – Latitude projection of the point P (degrees)
- lon_p (number) – Longitude projection of the point P (degrees)
- lat_grid (number, sequence of np.ndarray) – Grid of latitude points to which compute the distance (degrees)
- lon_grid (number, sequence of np.ndarray) – Grid of longitude points to which compute the distance (degrees)
Returns: d – Distance between the point P and each point in (lat_grid, lon_grid) (km)
Return type: numpy.ndarray
-
itur.utils.
compute_distance_earth_to_earth_wgs84
(lat_p, lon_p, lat_grid, lon_grid)[source]¶ Compute the distance between points using the WGS84 inverse method.
Compute the distance between a point (P) in (lat_p, lon_p) and a matrix of latitude and longitudes (lat_grid, lon_grid) using the WGS84 inverse method.
Parameters: - lat_p (number) – Latitude projection of the point P (degrees)
- lon_p (number) – Longitude projection of the point P (degrees)
- lat_grid (number, sequence of np.ndarray) – Grid of latitude points to which compute the distance (degrees)
- lon_grid (number, sequence of np.ndarray) – Grid of longitude points to which compute the distance (degrees)
Returns: d – Distance between the point P and each point in (lat_grid, lon_grid) (km)
Return type: numpy.ndarray
-
itur.utils.
compute_distance_earth_to_earth_haversine
(lat_p, lon_p, lat_grid, lon_grid)[source]¶ Compute the distance between points using the Haversine formula.
Compute the distance between a point (P) in (lat_s, lon_s) and a matrix of latitude and longitudes (lat_grid, lon_grid) using the Haversine formula.
Parameters: - lat_p (number) – Latitude projection of the point P (degrees)
- lon_p (number) – Longitude projection of the point P (degrees)
- lat_grid (number, sequence of np.ndarray) – Grid of latitude points to which compute the distance (degrees)
- lon_grid (number, sequence of np.ndarray) – Grid of longitude points to which compute the distance (degrees)
Returns: d – Distance between the point P and each point in (lat_grid, lon_grid) (km)
Return type: numpy.ndarray
References
This is based on the Haversine formula
-
itur.utils.
regular_lat_lon_grid
(resolution_lat=1, resolution_lon=1, lon_start_0=False, lat_min=-90, lat_max=90, lon_min=-180, lon_max=180)[source]¶ Build regular latitude and longitude matrices.
Builds a latitude and longitude coordinate matrix with resolution resolution_lat, resolution_lon.
Parameters: - resolution_lat (number) – Resolution for the latitude axis (deg)
- resolution_lon (number) – Resolution for the longitude axis (deg)
- lon_start_0 (boolean) – Indicates whether the longitude is indexed using a 0 - 360 scale (True) or using -180 - 180 scale (False). Default value is False
Returns: - lat (numpy.ndarray) – Grid of coordinates of the latitude point
- lon (numpy.ndarray) – Grid of coordinates of the longitude point
-
itur.utils.
elevation_angle
(h, lat_s, lon_s, lat_grid, lon_grid)[source]¶ Compute the elevation angle between a satellite and a point on Earth.
Compute the elevation angle between a satellite located in an orbit at height h and located above coordinates (lat_s, lon_s) and a matrix of latitude and longitudes (lat_grid, lon_grid).
Parameters: - h (float) – Orbital altitude of the satellite (km)
- lat_s (float) – Latitude of the projection of the satellite (degrees)
- lon_s (float) – Longitude of the projection of the satellite (degrees)
- lat_grid (number, sequence of np.ndarray) – Grid of latitude points to which compute the elevation angle (degrees)
- lon_grid (number, sequence of np.ndarray) – Grid of longitude points to which compute the elevation angle (degrees)
Returns: elevation – Elevation angle between the satellite and each point in (lat_grid, lon_grid) (degrees)
Return type: numpy.ndarray
References
[1] http://www.propagation.gatech.edu/ECE6390/notes/ASD5.pdf - Slides 3, 4
itur.plotting package¶
itur.plotting
provides convenient function to plot maps in ITU-Rpy.
This submodule uses matplotlib
and cartopy
as the default library to
plot maps. Alternatively, the user can use basemap
(if installed).
The example below shows the use of plot_in_map
to display the mean surface
temperature on the Earth.
import itur
# Generate a regular grid of latitude and longitudes with 0.1 degree
# resolution.
lat, lon = itur.utils.regular_lat_lon_grid(resolution_lat=0.1,
resolution_lon=0.1)
# Compute the surface mean temperature
T = itur.models.itu1510.surface_mean_temperature(lat, lon)
# Display the results in a map (using cartopy)
ax = itur.plotting.plot_in_map(
T, lat, lon, cmap='jet', vmin=230, vmax=310,
cbar_text='Annual mean surface temperature [K]')
# Display the results in a map (using basemap)
ax = itur.plotting.plot_in_map_basemap(
T, lat, lon, cmap='jet', vmin=230, vmax=310,
cbar_text='Annual mean surface temperature [K]')
-
itur.plotting.
plot_in_map
(data, lat=None, lon=None, lat_min=None, lat_max=None, lon_min=None, lon_max=None, cbar_text='', ax=None, figsize=(6, 4), **kwargs)[source]¶ Plot the values in data in a map using
cartopy
.The map uses an PlateCarree projection. Either {
lat
,lon
} or {lat_min
,lat_max
,lon_min
,lon_max
} need to be provided as inputs. This function requires thatcartopy
andmatplotlib
are installed.Parameters: - data (np.ndarray) – Data values to be plotted.
- lat (np.ndarray) – Matrix with the latitudes for each point in data (deg N)
- lon (np.ndarray) – Matrix with the longitudes for each point in data (deg E)
- lat_min (float) – Minimum latitude of the data (deg N)
- lat_max (float) – Maximum latitude of the data (deg N)
- lon_min (float) – Minimum longitude of the data (deg E)
- lat_max – Maximum longitude of the data (deg E)
- cbar_text (string) – Colorbar text caption.
- ax (Axes) – matplotlib axes where the data will be plotted.
- figsize (tuple) – Dimensions of the Figure
- **kwargs (dict) – Key-value arguments that will be passed to the contourf function.
Returns: ax – The matploltib axes object
Return type: Axes
-
itur.plotting.
plot_in_map_basemap
(data, lat=None, lon=None, lat_min=None, lat_max=None, lon_min=None, lon_max=None, cbar_text='', ax=None, figsize=(6, 4), **kwargs)[source]¶ Plot the values in data in a map using
basemap
.The map uses an equidistant cylindrical projection. Either {
lat
,lon
} or {lat_min
,lat_max
,lon_min
,lon_max
} to be provided as inputs. This function requires thatbasemap
andmatplotlib
are installed.Parameters: - data (np.ndarray) – Data values to be plotted.
- lat (np.ndarray) – Matrix with the latitudes for each point in data (deg N)
- lon (np.ndarray) – Matrix with the longitudes for each point in data (deg E)
- lat_min (float) – Minimum latitude of the data (deg N)
- lat_max (float) – Maximum latitude of the data (deg N)
- lon_min (float) – Minimum longitude of the data (deg E)
- lat_max – Maximum longitude of the data (deg E)
- cbar_text (string) – Colorbar text caption.
- ax (Axes) – matplotlib axes where the data will be plotted.
- figsize (tuple) – Dimensions of the Figure
- **kwargs (dict) – Key-value arguments that will be passed to the imshow function.
Returns: m – The map object generated by Basemap
Return type: Basemap
itur.models package¶
The itur.models
package contains the implementation of the models described in the different ITU-R P. recommendations.
Individual modules can be imported from itur.models
using itu<recomendation_number>
, as shown below:
import itur.models.itu618
Each module contains two functions, get_version()
and change_version()
, that allow to obtain or change the version currently being used.
The script below provides an example for the module that implements Recommendation ITU-R P.618.
import itur.models.itu618 as itu618
print('Current version of ITU-R P.618: ', itu618.get_version())
itu618.change_version(12) # Change to version ITU-R P.618-12
By default, each module contains a __model
object that acts as a singleton instance for the recommendation model. For most use cases, it is recommended
that the developers interact with the model using the publicly documented functions. This way, it is ensured that all functions called belong to the
same recommendation version, and that the parameters passed to the functions have the right units and format.
However, if a developer wants to instantiate a new model
object (i.e., to compare results from different version, for development purposes), a new object
can be instantiated as shown in the example below:
import itur.models.itu618 as itu618
model_618_12 = itu618._ITU618(12)
model_618_13 = itu618._ITU618(13)
Package contents¶
This Recommendation provides a method to estimate the radio refractive index and its behaviour for locations worldwide; describes both surface and vertical profile characteristics; and provides global maps for the distribution of refractivity parameters and their statistical variation.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.453 | [PDF] | 2019-08 |
its formula and refractivity data | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.453-14 | [PDF] | 08/2019 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.453-13 | [PDF] | 12/2017 |
Recommendation ITU-R P.453-12 | [PDF] | 09/2016 |
Recommendations not implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.453-14 | [PDF] | 08/2019 |
Recommendation ITU-R P.453-11 | [PDF] | 07/2015 |
Recommendation ITU-R P.453-10 | [PDF] | 02/2012 |
Recommendation ITU-R P.453-9 | [PDF] | 04/2003 |
Recommendation ITU-R P.453-8 | [PDF] | 02/2001 |
Recommendation ITU-R P.453-7 | [PDF] | 10/1999 |
Recommendation ITU-R P.453-6 | [PDF] | 05/1997 |
Recommendation ITU-R P.453-5 | [PDF] | 10/1995 |
Recommendation ITU-R P.453-4 | [PDF] | 08/1994 |
The atmospheric radio refractive index, n, can be computed by the following formula:
- where
- \(P_d\) : dry atmospheric pressure (hPa)
- \(P\) : total atmospheric pressure (hPa)
- \(e\) : water vapour pressure (hPa)
- \(T\) : absolute temperature (K)
Furthermore, in the absence of reliable local data, data on refractivity and refractivity gradients all over the world can be computed using global numerical maps provided in this recommendation.
-
itur.models.itu453.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.453 recommendation currently being used.
This function changes the model used for the ITU-R P.453 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 13: Activates recommendation ITU-R P.453-13 (12/17)
- 12: Activates recommendation ITU-R P.453-12 (07/15)
-
itur.models.itu453.
get_version
()[source]¶ Obtain the version of the ITU-R P.453 recommendation currently being used.
Returns: version – The version of the ITU-R P.453 recommendation being used. Return type: int
-
itur.models.itu453.
wet_term_radio_refractivity
(e, T)[source]¶ Determine the wet term of the radio refractivity.
Parameters: - e (number or Quantity) – Water vapour pressure (hPa)
- T (number or Quantity) – Absolute temperature (K)
Returns: N_wet – Wet term of the radio refractivity (-)
Return type: Quantity
References
[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en
-
itur.models.itu453.
dry_term_radio_refractivity
(Pd, T)[source]¶ Determine the dry term of the radio refractivity.
Parameters: - Pd (number or Quantity) – Dry atmospheric pressure (hPa)
- T (number or Quantity) – Absolute temperature (K)
Returns: N_dry – Dry term of the radio refractivity (-)
Return type: Quantity
References
[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en
-
itur.models.itu453.
radio_refractive_index
(Pd, e, T)[source]¶ Compute the radio refractive index.
Parameters: - Pd (number or Quantity) – Dry atmospheric pressure (hPa)
- e (number or Quantity) – Water vapour pressure (hPa)
- T (number or Quantity) – Absolute temperature (K)
Returns: n – Radio refractive index (-)
Return type: Quantity
References
[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en
-
itur.models.itu453.
water_vapour_pressure
(T, P, H, type_hydrometeor='water')[source]¶ Determine the water vapour pressure.
Parameters: - T (number or Quantity) – Absolute temperature (C)
- P (number or Quantity) – Total atmospheric pressure (hPa)
- H (number or Quantity) – Relative humidity (%)
- type_hydrometeor (string) – Type of hydrometeor. Valid strings are ‘water’ and ‘ice’
Returns: e – Water vapour pressure (hPa)
Return type: Quantity
References
[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en
-
itur.models.itu453.
saturation_vapour_pressure
(T, P, type_hydrometeor='water')[source]¶ Determine the saturation water vapour pressure.
Parameters: - T (number or Quantity) – Absolute temperature (C)
- P (number or Quantity) – Total atmospheric pressure (hPa)
- type_hydrometeor (string) – Type of hydrometeor. Valid strings are ‘water’ and ‘ice’
Returns: e_s – Saturation water vapour pressure (hPa)
Return type: Quantity
References
[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en
-
itur.models.itu453.
map_wet_term_radio_refractivity
(lat, lon, p=50)[source]¶ Determine the wet term of the radio refractivity.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns: N_wet – Wet term of the radio refractivity (-)
Return type: Quantity
References
[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en
-
itur.models.itu453.
DN65
(lat, lon, p)[source]¶ - Determine the statistics of the vertical gradient of radio
- refractivity in the lower 65 m from the surface of the Earth.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- p (number) – Percentage of time exceeded for p% of the average year
Returns: DN65_p – Vertical gradient of radio refractivity in the lowest 65 m from the surface of the Earth exceeded for p% of the average year
Return type: Quantity
References
[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en
-
itur.models.itu453.
DN1
(lat, lon, p)[source]¶ - Determine the statistics of the vertical gradient of radio
- refractivity over 1 km layer from the surface.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- p (number) – Percentage of time exceeded for p% of the average year
Returns: DN1_p – Vertical gradient of radio refractivity over a 1 km layer from the surface exceeded for p% of the average year
Return type: Quantity
References
[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en
This Recommendation provides prediction methods for the propagation effects that should be taken into account in the design of digital fixed line-of-sight links, both in clear-air and rainfall conditions. It also provides link design guidance in clear step-by-step procedures including the use of mitigation techniques to minimize propagation impairments. The final outage predicted is the base for other Recommendations addressing error performance and availability.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.530 | [PDF] | 2021-09 |
Propagation data and prediction methods required for the design of terrestrial line-of-sight systems | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.530-18 | [PDF] | 09/2021 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.530-17 | [PDF] | 12/2017 |
Recommendation ITU-R P.530-16 | [PDF] | 07/2015 |
Recommendations not implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.530-18 | [PDF] | 09/2021 |
Recommendation ITU-R P.530-15 | [PDF] | 09/2013 |
Recommendation ITU-R P.530-14 | [PDF] | 02/2012 |
Recommendation ITU-R P.530-13 | [PDF] | 10/2009 |
Recommendation ITU-R P.530-12 | [PDF] | 02/2007 |
Recommendation ITU-R P.530-11 | [PDF] | 03/2005 |
Recommendation ITU-R P.530-10 | [PDF] | 11/2001 |
Recommendation ITU-R P.530-9 | [PDF] | 02/2001 |
Recommendation ITU-R P.530-8 | [PDF] | 10/1999 |
Recommendation ITU-R P.530-7 | [PDF] | 08/1997 |
Recommendation ITU-R P.530-6 | [PDF] | 10/1995 |
Recommendation ITU-R P.530-5 | [PDF] | 08/1994 |
The propagation loss on a terrestrial line-of-sight path relative to the free-space loss (see Recommendation ITU-R P.525) is the sum of different contributions as follows:
- attenuation due to atmospheric gases;
- diffraction fading due to obstruction or partial obstruction of the path;
- fading due to multipath, beam spreading and scintillation;
- attenuation due to variation of the angle-of-arrival/launch;
- attenuation due to precipitation;
- attenuation due to sand and dust storms.
Each of these contributions has its own characteristics as a function of frequency, path length and geographic location. These are described in the paragraphs that follow.
-
itur.models.itu530.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.530 recommendation currently being used.
This function changes the model used for the ITU-R P.530 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 16: Activates recommendation ITU-R P.530-16 (07/15) (Current version)
-
itur.models.itu530.
get_version
()[source]¶ Obtain the version of the ITU-R P.530 recommendation currently being used.
Returns: version – The version of the ITU-R P.530 recommendation being used. Return type: int
-
itur.models.itu530.
fresnel_ellipse_radius
(d1, d2, f)[source]¶ Compute the radius of the first Fresnel ellipsoid.
Parameters: - d1 (number, sequence, or numpy.ndarray) – Distances from the first terminal to the path obstruction. [km]
- d2 (number, sequence, or numpy.ndarray) – Distances from the second terminal to the path obstruction. [km]
- f (number) – Frequency of the link [GHz]
Returns: F1 – Radius of the first Fresnel ellipsoid [m]
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en
-
itur.models.itu530.
diffraction_loss
(d1, d2, h, f)[source]¶ Estimate the diffraction loss over average terrain.
Diffraction loss over average terrain. This value is valid for losses greater than 15 dB.
Parameters: - d1 (number, sequence, or numpy.ndarray) – Distances from the first terminal to the path obstruction. [km]
- d2 (number, sequence, or numpy.ndarray) – Distances from the second terminal to the path obstruction. [km]
- h (number, sequence, or numpy.ndarray) – Height difference between most significant path blockage and the path trajectory. h is negative if the top of the obstruction of interest is above the virtual line-of-sight. [m]
- f (number) – Frequency of the link [GHz]
Returns: A_d – Diffraction loss over average terrain [dB]
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en
-
itur.models.itu530.
multipath_loss_for_A
(lat, lon, h_e, h_r, d, f, A)[source]¶ Estimate the single-frequency (or narrow-band) fading distribution.
Method for predicting the single-frequency (or narrow-band) fading distribution at large fade depths in the average worst month in any part of the world. Given a fade depth value ‘A’, determines the amount of time it will be exceeded during a year
This method does not make use of the path profile and can be used for initial planning, licensing, or design purposes.
This method is only valid for small percentages of time.
Multi-path fading and enhancement only need to be calculated for path lengths longer than 5 km, and can be set to zero for shorter paths.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- h_e (number) – Emitter antenna height (above the sea level) [m]
- h_r (number) – Receiver antenna height (above the sea level) [m]
- d (number, sequence, or numpy.ndarray) – Distances between antennas [km]
- f (number) – Frequency of the link [GHz]
- A (number) – Fade depth [dB]
Returns: p_w – percentage of time that fade depth A is exceeded in the average worst month [%]
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en
-
itur.models.itu530.
multipath_loss
(lat, lon, h_e, h_r, d, f, A)[source]¶ Estimate the percentage of time that any fade depth is exceeded.
Method for predicting the percentage of time that any fade depth is exceeded. This method combines the deep fading distribution given in the multipath_loss_for_A’ and an empirical interpolation procedure for shallow fading down to 0 dB.
This method does not make use of the path profile and can be used for initial planning, licensing, or design purposes.
Multi-path fading and enhancement only need to be calculated for path lengths longer than 5 km, and can be set to zero for shorter paths.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- h_e (number) – Emitter antenna height (above the sea level) [m]
- h_r (number) – Receiver antenna height (above the sea level) [m]
- d (number, sequence, or numpy.ndarray) – Distances between antennas [km]
- f (number) – Frequency of the link [GHz]
- A (number) – Fade depth [dB]
Returns: p_w – percentage of time that fade depth A is exceeded in the average worst month [%]
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en
-
itur.models.itu530.
rain_attenuation
(lat, lon, d, f, el, p, tau=45, R001=None)[source]¶ Estimate long-term statistics of rain attenuation.
Attenuation can also occur as a result of absorption and scattering by such hydro-meteors as rain, snow, hail and fog. Although rain attenuation can be ignored at frequencies below about 5 GHz, it must be included in design calculations at higher frequencies, where its importance increases rapidly.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- d (number, sequence, or numpy.ndarray) – Path length [km]
- f (number) – Frequency of the link [GHz]
- el (sequence, or number) – Elevation angle (degrees)
- p (number) – Percentage of the time the rain attenuation value is exceeded.
- R001 (number, optional) –
Point rainfall rate for the location for 0.01% of an average year (mm/h). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.837. Some useful values:
- 0.25 mm/h : Drizzle
- 2.5 mm/h : Light rain
- 12.5 mm/h : Medium rain
- 25.0 mm/h : Heavy rain
- 50.0 mm/h : Downpour
- 100 mm/h : Tropical
- 150 mm/h : Monsoon
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
Returns: A_r – Attenuation exceeded during p percent of the time [dB]
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en
-
itur.models.itu530.
inverse_rain_attenuation
(lat, lon, d, f, el, Ap, tau=45, R001=None)[source]¶ Estimate the percentage of time a given attenuation is exceeded.
Estimate the percentage of time a given attenuation is exceeded due to rain events.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- d (number, sequence, or numpy.ndarray) – Path length [km]
- f (number) – Frequency of the link [GHz]
- el (sequence, or number) – Elevation angle (degrees)
- Ap (number) – Fade depth
- R001 (number, optional) –
Point rainfall rate for the location for 0.01% of an average year (mm/h). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.837. Some useful values:
- 0.25 mm/h : Drizzle
- 2.5 mm/h : Light rain
- 12.5 mm/h : Medium rain
- 25.0 mm/h : Heavy rain
- 50.0 mm/h : Downpour
- 100 mm/h : Tropical
- 150 mm/h : Monsoon
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
Returns: p – Percentage of time that the attenuation A is exceeded.
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en
-
itur.models.itu530.
rain_event_count
(lat, lon, d, f, el, A, tau=45, R001=None)[source]¶ Estimate the number of fade events exceeding attenuation ‘A’.
Estimate the number of fade events exceeding attenuation ‘A’ for 10 seconds or longer.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- d (number, sequence, or numpy.ndarray) – Path length [km]
- f (number) – Frequency of the link [GHz]
- el (sequence, or number) – Elevation angle (degrees)
- A (number) – Fade depth
- R001 (number, optional) –
Point rainfall rate for the location for 0.01% of an average year (mm/h). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.837. Some useful values:
- 0.25 mm/h : Drizzle
- 2.5 mm/h : Light rain
- 12.5 mm/h : Medium rain
- 25.0 mm/h : Heavy rain
- 50.0 mm/h : Downpour
- 100 mm/h : Tropical
- 150 mm/h : Monsoon
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
Returns: p – Percentage of time that the attenuation A is exceeded.
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en
-
itur.models.itu530.
XPD_outage_clear_air
(lat, lon, h_e, h_r, d, f, XPD_g, C0_I, XPIF=0)[source]¶ Estimate the probability of outage due to cross-polar discrimination.
Estimate the probability of outage due to cross-polar discrimination reduction due to clear-air effects, assuming that a target C0_I is required.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- h_e (number) – Emitter antenna height (above the sea level) [m]
- h_r (number) – Receiver antenna height (above the sea level) [m]
- d (number, sequence, or numpy.ndarray) – Distances between antennas [km]
- f (number) – Frequency of the link [GHz]
- XPD_g (number) – Manufacturer’s guaranteed minimum XPD at boresight for both the transmitting and receiving antennas [dB]
- C0_I (number) – Carrier-to-interference ratio for a reference BER [dB]
- XPIF (number, optional) – Laboratory-measured cross-polarization improvement factor that gives the difference in cross-polar isolation (XPI) at sufficiently large carrier-to-noise ratio (typically 35 dB) and at a specific BER for systems with and without cross polar interference canceler (XPIC). A typical value of XPIF is about 20 dB. Default value 0 dB (no XPIC) [dB]
Returns: p_XP – Probability of outage due to clear-air cross-polarization
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en
-
itur.models.itu530.
XPD_outage_precipitation
(lat, lon, d, f, el, C0_I, tau=45, U0=15, XPIF=0)[source]¶ Estimate the probability of outage due to cross-polar discrimination.
Estimate the probability of outage due to cross-polar discrimination reduction due to precipitation effects, assuming that a target C0_I is required.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- d (number, sequence, or numpy.ndarray) – Distances between antennas [km]
- f (number) – Frequency of the link [GHz]
- el (sequence, or number) – Elevation angle (degrees)
- C0_I (number) – Carrier-to-interference ratio for a reference BER [dB]
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
- U0 (number, optional) – Coefficient for the cumulative distribution of the co-polar attenuation (CPA) for rain. Default 15 dB.
- XPIF (number, optional) – Laboratory-measured cross-polarization improvement factor that gives the difference in cross-polar isolation (XPI) at sufficiently large carrier-to-noise ratio (typically 35 dB) and at a specific BER for systems with and without cross polar interference canceler (XPIC). A typical value of XPIF is about 20 dB. Default value 0 dB (no XPIC) [dB]
Returns: p_XP – Probability of outage due to precipitation cross-polarization
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en
This Recommendation provides methods to predict the various propagation parameters needed in planning Earth-space systems operating in either the Earth-to-space or space-to-Earth direction.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.618 | [PDF] | 2017-12 |
Propagation data and prediction methods required for the design of Earth-space telecommunication systems | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.618-13 | [PDF] | 12/2017 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.618-13 | [PDF] | 12/2017 |
Recommendation ITU-R P.618-12 | [PDF] | 07/2015 |
Recommendations not implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.618-11 | [PDF] | 09/2013 |
Recommendation ITU-R P.618-10 | [PDF] | 10/2009 |
Recommendation ITU-R P.618-9 | [PDF] | 08/2007 |
Recommendation ITU-R P.618-8 | [PDF] | 04/2003 |
Recommendation ITU-R P.618-7 | [PDF] | 02/2001 |
Recommendation ITU-R P.618-6 | [PDF] | 10/1999 |
Recommendation ITU-R P.618-5 | [PDF] | 05/1997 |
Recommendation ITU-R P.618-4 | [PDF] | 10/1995 |
Recommendation ITU-R P.618-3 | [PDF] | 08/1994 |
The propagation loss on an Earth-space path, relative to the free-space loss, is the sum of different contributions as follows:
- attenuation by atmospheric gases;
- attenuation by rain, other precipitation and clouds;
- focusing and defocusing;
- decrease in antenna gain due to wave-front incoherence;
- scintillation and multipath effects;
- attenuation by sand and dust storms.
Each of these contributions has its own characteristics as a function of frequency, geographic location and elevation angle. As a rule, at elevation angles above 10 degrees, only gaseous attenuation, rain and cloud attenuation and possibly scintillation will be significant, depending on propagation conditions.
-
itur.models.itu618.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.618 recommendation currently being used.
This function changes the model used for the ITU-R P.618 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 13: Activates recommendation ITU-R P.618-13 (12/17) (Current version)
- 12: Activates recommendation ITU-R P.618-12 (07/15) (Superseded)
-
itur.models.itu618.
get_version
()[source]¶ The version of the current model for the ITU-R P.618 recommendation.
Obtain the version of the ITU-R P.618 recommendation currently being used.
Returns: version – The version of the ITU-R P.618 recommendation being used. Return type: int
-
itur.models.itu618.
rain_attenuation
(lat, lon, f, el, hs=None, p=0.01, R001=None, tau=45, Ls=None)[source]¶ Calculation of long-term rain attenuation statistics from point rainfall rate. The following procedure provides estimates of the long-term statistics of the slant-path rain attenuation at a given location for frequencies up to 55 GHz.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- f (number) – Frequency (GHz)
- el (sequence, or number) – Elevation angle (degrees)
- hs (number, sequence, or numpy.ndarray, optional) – Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
- p (number, optional) – Percentage of the time the rain attenuation value is exceeded.
- R001 (number, optional) –
Point rainfall rate for the location for 0.01% of an average year (mm/h). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.837. Some useful values:
- 0.25 mm/h : Drizzle
- 2.5 mm/h : Light rain
- 12.5 mm/h : Medium rain
- 25.0 mm/h : Heavy rain
- 50.0 mm/h : Downpour
- 100 mm/h : Tropical
- 150 mm/h : Monsoon
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
- Ls (number, optional) – Slant path length (km). If not provided, it will be computed using the rain height and the elevation angle. The ITU model does not require this parameter as an input.
Returns: attenuation – Attenuation due to rain (dB)
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf
-
itur.models.itu618.
rain_attenuation_probability
(lat, lon, el, hs=None, Ls=None, P0=None)[source]¶ The following procedure computes the probability of non-zero rain attenuation on a given slant path Pr(Ar > 0).
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- el (sequence, or number) – Elevation angle (degrees)
- hs (number, sequence, or numpy.ndarray, optional) – Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
- Ls (number, sequence, or numpy.ndarray, optional) – Slant path length from the earth station to the rain height (km). If data about the rain height is not available, this value is estimated automatically using Recommendation ITU-R P.838
- P0 (number, sequence, or numpy.ndarray, optional) – Probability of rain at the earth station, (0 ≤ P0 ≤ 1)
Returns: p – Probability of rain attenuation on the slant path (%)
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf
-
itur.models.itu618.
site_diversity_rain_outage_probability
(lat1, lon1, a1, el1, lat2, lon2, a2, el2, f, tau=45, hs1=None, hs2=None)[source]¶ Calculate the link outage probability in a diversity based scenario (two ground stations) due to rain attenuation. This method is valid for frequencies below 20 GHz, as at higher frequencies other impairments might affect affect site diversity performance.
This method predicts Pr(A1 > a1, A2 > a2), the joint probability (%) that the attenuation on the path to the first site is greater than a1 and the attenuation on the path to the second site is greater than a2.
Parameters: - lat1 (number or Quantity) – Latitude of the first ground station (deg)
- lon1 (number or Quantity) – Longitude of the first ground station (deg)
- a1 (number or Quantity) – Maximum admissible attenuation of the first ground station (dB)
- el1 (number or Quantity) – Elevation angle to the first ground station (deg)
- lat2 (number or Quantity) – Latitude of the second ground station (deg)
- lon2 (number or Quantity) – Longitude of the second ground station (deg)
- a2 (number or Quantity) – Maximum admissible attenuation of the second ground station (dB)
- el2 (number or Quantity) – Elevation angle to the second ground station (deg)
- f (number or Quantity) – Frequency (GHz)
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
- hs1 (number or Quantity, optional) – Altitude over the sea level of the first ground station (km). If not provided, uses Recommendation ITU-R P.1511 to compute the toporgraphic altitude
- hs2 (number or Quantity, optional) – Altitude over the sea level of the first ground station (km). If not provided, uses Recommendation ITU-R P.1511 to compute the toporgraphic altitude
Returns: probability – Joint probability (%) that the attenuation on the path to the first site is greater than a1 and the attenuation on the path to the second site is greater than a2
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf
-
itur.models.itu618.
scintillation_attenuation
(lat, lon, f, el, p, D, eta=0.5, T=None, H=None, P=None, hL=1000)[source]¶ Calculation of monthly and long-term statistics of amplitude scintillations at elevation angles greater than 5° and frequencies up to 20 GHz.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- f (number or Quantity) – Frequency (GHz)
- el (sequence, or number) – Elevation angle (degrees)
- p (number) – Percentage of the time the scintillation attenuation value is exceeded.
- D (number) – Physical diameter of the earth-station antenna (m)
- eta (number, optional) – Antenna efficiency. Default value 0.5 (conservative estimate)
- T (number, sequence, or numpy.ndarray, optional) – Average surface ambient temperature (°C) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
- H (number, sequence, or numpy.ndarray, optional) – Average surface relative humidity (%) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
- P (number, sequence, or numpy.ndarray, optional) – Average surface pressure (hPa) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
- hL (number, optional) – Height of the turbulent layer (m). Default value 1000 m
Returns: attenuation – Attenuation due to scintillation (dB)
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf
-
itur.models.itu618.
scintillation_attenuation_sigma
(lat, lon, f, el, p, D, eta=0.5, T=None, H=None, P=None, hL=1000)[source]¶ Calculation of the standard deviation of the amplitude of the scintillations attenuation at elevation angles greater than 5° and frequencies up to 20 GHz.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- f (number or Quantity) – Frequency (GHz)
- el (sequence, or number) – Elevation angle (degrees)
- p (number) – Percentage of the time the scintillation attenuation value is exceeded.
- D (number) – Physical diameter of the earth-station antenna (m)
- eta (number, optional) – Antenna efficiency. Default value 0.5 (conservative estimate)
- T (number, sequence, or numpy.ndarray, optional) – Average surface ambient temperature (°C) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
- H (number, sequence, or numpy.ndarray, optional) – Average surface relative humidity (%) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
- P (number, sequence, or numpy.ndarray, optional) – Average surface pressure (hPa) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
- hL (number, optional) – Height of the turbulent layer (m). Default value 1000 m
Returns: attenuation – Attenuation due to scintillation (dB)
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf
-
itur.models.itu618.
rain_cross_polarization_discrimination
(Ap, f, el, p, tau=45)[source]¶ Calculation of the cross-polarization discrimination (XPD) statistics from rain attenuation statistics. The following procedure provides estimates of the long-term statistics of the cross-polarization discrimination (XPD) statistics for frequencies up to 55 GHz and elevation angles lower than 60 deg.
Parameters: - Ap (number, sequence, or numpy.ndarray) – Rain attenuation (dB) exceeded for the required percentage of time, p, for the path in question, commonly called co-polar attenuation (CPA)
- f (number) – Frequency
- el (number, sequence, or numpy.ndarray) – Elevation angle (degrees)
- p (number) – Percentage of the time the XPD is exceeded.
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
Returns: attenuation – Cross-polarization discrimination (dB)
Return type: Quantity
References
[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf
-
itur.models.itu618.
fit_rain_attenuation_to_lognormal
(lat, lon, f, el, hs, P_k, tau)[source]¶ Compute the log-normal fit of rain attenuation vs. probability of occurrence.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- f (number or Quantity) – Frequency (GHz)
- el (sequence, or number) – Elevation angle (degrees)
- hs (number, sequence, or numpy.ndarray, optional) – Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
- P_k (number) – Rain probability
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
Returns: - sigma_lna – Standar deviation of the lognormal distribution
- m_lna – Mean of the lognormal distribution
References
[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf
This Recommendation provides methods to estimate the attenuation of atmospheric gases on terrestrial and slant paths
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.676 | [PDF] | 2022-08 |
Attenuation by atmospheric gases and related effects | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.676-13 | [PDF] | 08/2022 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.676-12 | [PDF] | 08/2019 |
Recommendation ITU-R P.676-11 | [PDF] | 09/2016 |
Recommendation ITU-R P.676-10 | [PDF] | 09/2013 |
Recommendation ITU-R P.676-9 | [PDF] | 02/2012 |
Recommendations not implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.676-13 | [PDF] | 08/2022 |
Recommendation ITU-R P.676-8 | [PDF] | 10/2009 |
Recommendation ITU-R P.676-7 | [PDF] | 02/0207 |
Recommendation ITU-R P.676-6 | [PDF] | 03/2005 |
Recommendation ITU-R P.676-5 | [PDF] | 02/2001 |
Recommendation ITU-R P.676-4 | [PDF] | 10/1999 |
Recommendation ITU-R P.676-3 | [PDF] | 08/1997 |
Recommendation ITU-R P.676-2 | [PDF] | 10/1995 |
Recommendation ITU-R P.676-1 | [PDF] | 03/1992 |
This Recommendation provides the following three methods of predicting the specific and path gaseous attenuation due to oxygen and water vapour:
- Calculation of specific and path gaseous attenuation using the line-by-line summation assuming the atmospheric pressure, temperature, and water vapour density vs. height;
- An approximate estimate of specific and path gaseous attenuation assuming the water vapour density at the surface of the Earth;
- An approximate estimate of path attenuation assuming the integrated water vapour content along the path.
These prediction methods can use local meteorological data, or reference atmospheres or meteorological maps corresponding to a desired probability of exceedance that are provided in other ITU-R P-series Recommendations. In the absence of local data, a combination of: a) the reference atmospheric profiles given in Recommendation ITU-R P.835 may be used, b) the mean annual global reference atmosphere given in Recommendation ITU-R P.835, c) the map of mean annual surface temperature in Recommendation ITU-R P.1510 and d) the maps of surface water vapour density vs. exceedance probability given in Recommendation ITU-R P.836 may be used in lieu of the standard ground-level surface water vapour density of 7.5 g/m3.
The method to compute an estimate of gaseous attenuation computed by a summation of individual absorption lines that is valid for the frequency range 1-1 000 GHz, and the method to compute a simplified approximate method to estimate gaseous attenuation that is applicable in the frequency range 1-350 GHz.
-
itur.models.itu676.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.676 recommendation currently being used.
This function changes the model used for the ITU-R P.676 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 12: Activates recommendation ITU-R P.676-12 (08/19) (Current version)
- 11: Activates recommendation ITU-R P.676-11 (09/16) (Superseded)
- 10: Activates recommendation ITU-R P.676-10 (09/13) (Superseded)
- 9: Activates recommendation ITU-R P.676-9 (02/12) (Superseded)
-
itur.models.itu676.
get_version
()[source]¶ Obtain the version of the ITU-R P.676 recommendation currently being used.
Returns: version – The version of the ITU-R P.530 recommendation being used. Return type: int
-
itur.models.itu676.
gaseous_attenuation_terrestrial_path
(r, f, el, rho, P, T, mode)[source]¶ Estimate the attenuation of atmospheric gases on terrestrial paths. This function operates in two modes, ‘approx’, and ‘exact’:
- ‘approx’: a simplified approximate method to estimate gaseous attenuation that is applicable in the frequency range 1-350 GHz.
- ‘exact’: an estimate of gaseous attenuation computed by summation of individual absorption lines that is valid for the frequency range 1-1,000 GHz
Parameters: - r (number or Quantity) – Path length (km)
- f (number or Quantity) – Frequency (GHz)
- el (sequence, number or Quantity) – Elevation angle (degrees)
- rho (number or Quantity) – Water vapor density (g/m**3)
- P (number or Quantity) – Atmospheric pressure (hPa)
- T (number or Quantity) – Absolute temperature (K)
- mode (string, optional) – Mode for the calculation. Valid values are ‘approx’, ‘exact’. If ‘approx’ Uses the method in Annex 2 of the recommendation (if any), else uses the method described in Section 1. Default, ‘approx’
Returns: attenuation – Terrestrial path attenuation (dB)
Return type: Quantity
References
[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en
-
itur.models.itu676.
gaseous_attenuation_slant_path
(f, el, rho, P, T, V_t=None, h=None, mode='approx')[source]¶ Estimate the attenuation of atmospheric gases on slant paths. This function operates in two modes, ‘approx’, and ‘exact’:
- ‘approx’: a simplified approximate method to estimate gaseous attenuation that is applicable in the frequency range 1-350 GHz.
- ‘exact’: an estimate of gaseous attenuation computed by summation of individual absorption lines that is valid for the frequency range 1-1,000 GHz
Parameters: - f (number or Quantity) – Frequency (GHz)
- el (sequence, number or Quantity) – Elevation angle (degrees)
- rho (number or Quantity) – Water vapor density (g/m3)
- P (number or Quantity) – Atmospheric pressure (hPa)
- T (number or Quantity) – Absolute temperature (K)
- V_t (number or Quantity (kg/m2)) – Integrated water vapour content from: a) local radiosonde or radiometric data or b) at the required percentage of time (kg/m2) obtained from the digital maps in Recommendation ITU-R P.836 (kg/m2). If None, use general method to compute the wet-component of the gaseous attenuation. If provided, ‘h’ must be also provided. Default is None.
- h (number, sequence, or numpy.ndarray) – Altitude of the receivers. If None, use the topographical altitude as described in recommendation ITU-R P.1511. If provided, ‘V_t’ needs to be also provided. Default is None.
- mode (string, optional) – Mode for the calculation. Valid values are ‘approx’, ‘exact’. If ‘approx’ Uses the method in Annex 2 of the recommendation (if any), else uses the method described in Section 1. Default, ‘approx’
Returns: attenuation – Slant path attenuation (dB)
Return type: Quantity
References
[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en
-
itur.models.itu676.
gaseous_attenuation_inclined_path
(f, el, rho, P, T, h1, h2, mode='approx')[source]¶ Estimate the attenuation of atmospheric gases on inclined paths between two ground stations at heights h1 and h2. This function operates in two modes, ‘approx’, and ‘exact’:
- ‘approx’: a simplified approximate method to estimate gaseous attenuation that is applicable in the frequency range 1-350 GHz.
- ‘exact’: an estimate of gaseous attenuation computed by summation of individual absorption lines that is valid for the frequency range 1-1,000 GHz
Parameters: - f (number or Quantity) – Frequency (GHz)
- el (sequence, number or Quantity) – Elevation angle (degrees)
- rho (number or Quantity) – Water vapor density (g/m3)
- P (number or Quantity) – Atmospheric pressure (hPa)
- T (number or Quantity) – Absolute temperature (K)
- h1 (number or Quantity) – Height of ground station 1 (km)
- h2 (number or Quantity) – Height of ground station 2 (km)
- mode (string, optional) – Mode for the calculation. Valid values are ‘approx’, ‘exact’. If ‘approx’ Uses the method in Annex 2 of the recommendation (if any), else uses the method described in Section 1. Default, ‘approx’
Returns: attenuation – Inclined path attenuation (dB)
Return type: Quantity
References
[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en
-
itur.models.itu676.
slant_inclined_path_equivalent_height
(f, P, rho=7.5, T=298.15)[source]¶ Computes the equivalent height to be used for oxygen and water vapour gaseous attenuation computations.
Parameters: - f (number or Quantity) – Frequency (GHz)
- P (number or Quantity) – Atmospheric pressure (hPa)
- rho (number or Quantity) – Water vapor density (g/m3)
- T (number or Quantity) – Absolute temperature (K)
Returns: ho, hw – Equivalent height for oxygen and water vapour (km)
Return type: Quantity
References
[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en
-
itur.models.itu676.
zenit_water_vapour_attenuation
(lat, lon, p, f, V_t=None, h=None)[source]¶ An alternative method may be used to compute the slant path attenuation by water vapour, in cases where the integrated water vapour content along the path,
V_t
, is known.Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- p (number) – Percentage of the time the zenit water vapour attenuation value is exceeded.
- f (number or Quantity) – Frequency (GHz)
- V_t (number or Quantity, optional) – Integrated water vapour content along the path (kg/m2 or mm). If not provided this value is estimated using Recommendation ITU-R P.836. Default value None
- h (number, sequence, or numpy.ndarray) – Altitude of the receivers. If None, use the topographical altitude as described in recommendation ITU-R P.1511
Returns: A_w – Water vapour attenuation along the slant path (dB)
Return type: Quantity
References
[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en
-
itur.models.itu676.
gammaw_approx
(f, P, rho, T)[source]¶ Method to estimate the specific attenuation due to water vapour using the approximate method descibed in Annex 2.
Parameters: - f (number or Quantity) – Frequency (GHz)
- P (number or Quantity) – Atmospheric pressure (hPa)
- rho (number or Quantity) – Water vapor density (g/m3)
- T (number or Quantity) – Absolute temperature (K)
Returns: gamma_w – Water vapour specific attenuation (dB/km)
Return type: Quantity
References
[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en
-
itur.models.itu676.
gamma0_approx
(f, P, rho, T)[source]¶ Method to estimate the specific attenuation due to dry atmosphere using the approximate method descibed in Annex 2.
Parameters: - f (number or Quantity) – Frequency (GHz)
- P (number or Quantity) – Atmospheric pressure (hPa)
- rho (number or Quantity) – Water vapor density (g/m3)
- T (number or Quantity) – Absolute temperature (K)
Returns: gamma_w – Dry atmosphere specific attenuation (dB/km)
Return type: Quantity
References
[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en
-
itur.models.itu676.
gammaw_exact
(f, P, rho, T)[source]¶ Method to estimate the specific attenuation due to water vapour using the line-by-line method described in Annex 1 of the recommendation.
Parameters: - f (number or Quantity) – Frequency (GHz)
- P (number or Quantity) – Atmospheric pressure (hPa)
- rho (number or Quantity) – Water vapor density (g/m3)
- T (number or Quantity) – Absolute temperature (K)
Returns: gamma_w – Water vapour specific attenuation (dB/km)
Return type: Quantity
References
[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en
-
itur.models.itu676.
gamma0_exact
(f, P, rho, T)[source]¶ Method to estimate the specific attenuation due to dry atmosphere using the line-by-line method described in Annex 1 of the recommendation.
Parameters: - f (number or Quantity) – Frequency (GHz)
- P (number or Quantity) – Atmospheric pressure (hPa)
- rho (number or Quantity) – Water vapor density (g/m3)
- T (number or Quantity) – Absolute temperature (K)
Returns: gamma_w – Dry atmosphere specific attenuation (dB/km)
Return type: Quantity
References
[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en
-
itur.models.itu676.
gamma_exact
(f, P, rho, T)[source]¶ Method to estimate the specific attenuation using the line-by-line method described in Annex 1 of the recommendation.
Parameters: - f (number or Quantity) – Frequency (GHz)
- P (number or Quantity) – Atmospheric pressure (hPa)
- rho (number or Quantity) – Water vapor density (g/m3)
- T (number or Quantity) – Absolute temperature (K)
Returns: gamma – Specific attenuation (dB/km)
Return type: Quantity
References
[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en
This Recommendation provides expressions and data for reference standard atmospheres required for the calculation of gaseous attenuation on Earth-space paths.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.835 | [PDF] | 2017-12 |
Reference standard atmospheres | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.835-6 | [PDF] | 12/2017 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.835-6 | [PDF] | 12/2017 |
Recommendation ITU-R P.835-5 | [PDF] | 02/2012 |
Recommendations not implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.835-4 | [PDF] | 03/2005 |
Recommendation ITU-R P.835-3 | [PDF] | 10/1999 |
Recommendation ITU-R P.835-2 | [PDF] | 08/1997 |
Recommendation ITU-R P.835-1 | [PDF] | 08/1994 |
This recommendation provides the equations to determine the temperature, pressure and water-vapour pressure as a function of altitude, as described in the U.S. Standard Atmosphere 1976. These values should be used for calculating gaseous attenuation when more reliable local data are not available.
-
itur.models.itu835.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.835 recommendation currently being used.
This function changes the model used for the ITU-R P.835 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 6: Activates recommendation ITU-R P.835-6 (12/17) (Current version)
- 5: Activates recommendation ITU-R P.835-5 (02/12) (Superseded)
-
itur.models.itu835.
get_version
()[source]¶ The version of the model currently in use for the ITU-R P.835 recommendation.
Obtain the version of the ITU-R P.835 recommendation currently being used.
Returns: version – The version of the ITU-R P.835 recommendation being used. Return type: int
-
itur.models.itu835.
temperature
(lat, h, season='summer')[source]¶ Determine the temperature at a given latitude and height.
Method to determine the temperature as a function of altitude and latitude, for calculating gaseous attenuation along an Earth-space path. This method is recommended when more reliable local data are not available.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- h (number or Quantity) – Height (km)
- season (string) – Season of the year (available values, ‘summer’, and ‘winter’). Default ‘summer’
Returns: T – Temperature (K)
Return type: Quantity
References
[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en
-
itur.models.itu835.
pressure
(lat, h, season='summer')[source]¶ Determine the atmospheric pressure at a given latitude and height.
Method to determine the pressure as a function of altitude and latitude, for calculating gaseous attenuation along an Earth-space path. This method is recommended when more reliable local data are not available.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- h (number or Quantity) – Height (km)
- season (string) – Season of the year (available values, ‘summer’, and ‘winter’). Default ‘summer’
Returns: P – Pressure (hPa)
Return type: Quantity
References
[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en
-
itur.models.itu835.
water_vapour_density
(lat, h, season='summer')[source]¶ Determine the water vapour density at a given latitude and height.
Method to determine the water-vapour density as a function of altitude and latitude, for calculating gaseous attenuation along an Earth-space path. This method is recommended when more reliable local data are not available.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- h (number or Quantity) – Height (km)
- season (string) – Season of the year (available values, ‘summer’, and ‘winter’). Default ‘summer’
Returns: rho – Water vapour density (g/m^3)
Return type: Quantity
References
[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en
-
itur.models.itu835.
standard_temperature
(h, T_0=288.15)[source]¶ Determine the standard temperature at a given height.
Method to compute the temperature of an standard atmosphere at a given height. The reference standard atmosphere is based on the United States Standard Atmosphere, 1976, in which the atmosphere is divided into seven successive layers showing linear variation with temperature.
Parameters: - h (number or Quantity) – Height (km)
- T_0 (number or Quantity) – Surface temperature (K)
Returns: T – Temperature (K)
Return type: Quantity
References
[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en
-
itur.models.itu835.
standard_pressure
(h, T_0=288.15, P_0=1013.25)[source]¶ Determine the standard pressure at a given height.
Method to compute the total atmopsheric pressure of an standard atmosphere at a given height.
The reference standard atmosphere is based on the United States Standard Atmosphere, 1976, in which the atmosphere is divided into seven successive layers showing linear variation with temperature.
Parameters: - h (number or Quantity) – Height (km)
- T_0 (number or Quantity) – Surface temperature (K)
- P_0 (number or Quantity) – Surface pressure (hPa)
Returns: P – Pressure (hPa)
Return type: Quantity
References
[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en
-
itur.models.itu835.
standard_water_vapour_density
(h, h_0=2, rho_0=7.5)[source]¶ Determine the standard water vapour density at a given height.
The reference standard atmosphere is based on the United States Standard Atmosphere, 1976, in which the atmosphere is divided into seven successive layers showing linear variation with temperature.
Parameters: - h (number or Quantity) – Height (km)
- h_0 (number or Quantity) – Scale height (km)
- rho_0 (number or Quantity) – Surface water vapour density (g/m^3)
Returns: rho – Water vapour density (g/m^3)
Return type: Quantity
References
[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en
-
itur.models.itu835.
standard_water_vapour_pressure
(h, h_0=2, rho_0=7.5)[source]¶ Determine the standard water vapour pressure at a given height.
The reference standard atmosphere is based on the United States Standard Atmosphere, 1976, in which the atmosphere is divided into seven successive layers showing linear variation with temperature.
Parameters: - h (number or Quantity) – Height (km)
- h_0 (number or Quantity) – Scale height (km)
- rho_0 (number or Quantity) – Surface water vapour density (g/m^3)
Returns: e – Water vapour pressure (hPa)
Return type: Quantity
References
[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en
This Recommendation provides methods to predict the surface water vapour density and total columnar water vapour content on Earth-space paths.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.836 | [PDF] | 2017-12 |
surface density and total columnar content | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.836-6 | [PDF] | 12/2017 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.836-6 | [PDF] | 12/2017 |
Recommendation ITU-R P.836-5 | [PDF] | 09/2013 |
Recommendation ITU-R P.836-4 | [PDF] | 10/2009 |
Recommendations not implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.836-3 | [PDF] | 11/2001 |
Recommendation ITU-R P.836-2 | [PDF] | 02/2001 |
Recommendation ITU-R P.836-1 | [PDF] | 08/1997 |
Recommendation ITU-R P.836-0 | [PDF] | 03/1992 |
Atmospheric water vapour and oxygen cause absorption at millimetre wavelengths especially in the proximity of absorption lines (see Recommendation ITU-R P.676). The concentration of atmospheric oxygen is relatively constant; however, the concentration of water vapour varies both geographically and with time.
For some applications, the total water vapour content along a path can be used for the calculation of excess path length and for the attenuation due to atmospheric water vapour, where the attenuation due to atmospheric water vapour is assumed to be proportional to the total water vapour content through its specific mass absorption coefficient.
This Recommendation provides method used for global calculations of propagation effects that require an estimate of surface water vapour density or total columnar content of water vapour and its seasonal variation, when more accurate local data are not available.
-
itur.models.itu836.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.836 recommendation currently being used.
This function changes the model used for the ITU-R P.836 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 6: Activates recommendation ITU-R P.836-6 (12/17) (Current version)
- 5: Activates recommendation ITU-R P.836-5 (09/13) (Superseded)
- 4: Activates recommendation ITU-R P.836-4 (10/09) (Superseded)
-
itur.models.itu836.
get_version
()[source]¶ Obtain the version of the ITU-R P.836 recommendation currently being used.
Returns: version – Version currently being used. Return type: int
-
itur.models.itu836.
surface_water_vapour_density
(lat, lon, p, alt=None)[source]¶ Compute the surface water vapour density along a path.
This method computes the surface water vapour density along a path at a desired location on the surface of the Earth.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- p (number) – Percentage of time exceeded for p% of the average year
- alt (number, sequence, or numpy.ndarray) – Altitude of the receivers. If None, use the topographical altitude as described in recommendation ITU-R P.1511
Returns: rho – Surface water vapour density (g/m3)
Return type: Quantity
References
[1] Water vapour: surface density and total columnar content https://www.itu.int/rec/R-REC-P.836/en
-
itur.models.itu836.
total_water_vapour_content
(lat, lon, p, alt=None)[source]¶ Compute the total water vapour content along a path.
This method computes the total water vapour content along a path at a desired location on the surface of the Earth.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- p (number) – Percentage of time exceeded for p% of the average year
- alt (number, sequence, or numpy.ndarray) – Altitude of the receivers. If None, use the topographical altitude as described in recommendation ITU-R P.1511
Returns: V – Total water vapour content (kg/m2)
Return type: Quantity
References
[1] Water vapour: surface density and total columnar content https://www.itu.int/rec/R-REC-P.836/en
This Recommendation provides a method to compute the characteristics of precipitation for propagation modelling
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.837 | [PDF] | 2017-06 |
Characteristics of precipitation for propagation modelling | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.837-7 | [PDF] | 06/2017 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.837-7 | [PDF] | 06/2017 |
Recommendation ITU-R P.837-6 | [PDF] | 02/2012 |
Recommendations not implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.837-5 | [PDF] | 08/2007 |
Recommendation ITU-R P.837-4 | [PDF] | 04/2003 |
Recommendation ITU-R P.837-3 | [PDF] | 02/2001 |
Recommendation ITU-R P.837-2 | [PDF] | 10/1999 |
Recommendation ITU-R P.837-1 | [PDF] | 08/1994 |
Rainfall rate statistics with a 1-min integration time are required for the prediction of rain attenuation in terrestrial and satellite links. Data of long-term measurements of rainfall rate may be available from local sources, but only with higher integration times. This Recommendation provides maps of meteorological parameters that have been obtained using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-40 re-analysis database, which are recommended for the prediction of rainfall rate statistics with a 1-min integration time, when local measurements are missing.
-
itur.models.itu837.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.837 recommendation currently being used.
This function changes the model used for the ITU-R P.837 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 7: Activates recommendation ITU-R P.837-7 (12/17) (Current version)
- 6: Activates recommendation ITU-R P.837-6 (02/12) (Superseded)
-
itur.models.itu837.
get_version
()[source]¶ Obtain the version of the ITU-R P.837 recommendation currently being used.
Returns: version – Version currently being used. Return type: int
-
itur.models.itu837.
rainfall_probability
(lat, lon)[source]¶ Compute the percentage probability of rain in an average year, P0, at a given location.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns: P0 – Percentage probability of rain in an average year (%)
Return type: numpy.ndarray
References
[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.837/en
-
itur.models.itu837.
rainfall_rate
(lat, lon, p)[source]¶ Compute the rainfall rate exceeded for p% of the average year at a given location.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- p (number) – Percentage of time exceeded for p% of the average year
Returns: R001 – Rainfall rate exceeded for p% of the average year
Return type: numpy.ndarray
References
[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.837/en
Compute the percentage of time of the average year that a given rainfall rate (R) is exceeded at a given location
This method calls successively to rainfall_rate (sing bisection) with different values of p.
Note: This method cannot operate in a vectorized manner.
Parameters: - lat (number) – Latitude of the receiver point
- lon (number) – Longitude of the receiver point
- R (number, sequence, or numpy.ndarray) – Rainfall rate (mm/h)
Returns: p – Rainfall rate exceeded for p% of the average year
Return type: numpy.ndarray
References
[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.837/en
This Recommendation provides a method to compute the specific attenuation for rain for use in prediction methods.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.838 | [PDF] | 2005-03 |
Specific attenuation model for rain for use in prediction methods | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.838-3 | [PDF] | 03/2005 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.838-3 | [PDF] | 03/2005 |
Recommendation ITU-R P.838-2 | [PDF] | 04/2003 |
Recommendation ITU-R P.838-1 | [PDF] | 10/1999 |
Recommendation ITU-R P.838-0 | [PDF] | 03/1992 |
The specific attenuation \(\gamma_R\) (dB/km) is obtained from the rain rate \(R:math:\) (mm/h) using the power-law relationship:
Values for the coefficients \(k\) and \(\alpha\) are determined as functions of frequency, f (GHz), and this recommendation provides value valid in the range from 1 to 1 000 GHz. The models from Recommendation ITU-R P.838 have been developed from curve-fitting to power-law coefficients derived from scattering calculations:
-
itur.models.itu838.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.838 recommendation currently being used.
This function changes the model used for the ITU-R P.838 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 3: Activates recommendation ITU-R P.838-3 (03/05) (Current version)
- 2: Activates recommendation ITU-R P.838-2 (04/03) (Superseded)
- 1: Activates recommendation ITU-R P.838-1 (10/99) (Superseded)
- 0: Activates recommendation ITU-R P.838-0 (03/92) (Superseded)
-
itur.models.itu838.
get_version
()[source]¶ Obtain the version of the ITU-R P.838 recommendation currently being used.
Returns: version – Version currently being used. Return type: int
-
itur.models.itu838.
rain_specific_attenuation_coefficients
(f, el, tau)[source]¶ Compute the values for the coefficients k and α.
A method to compute the values for the coefficients k and α to compute the rain specific attenuation \(\gamma_R\) (dB/km) (dB/km)
Parameters: - f (number or Quantity) – Frequency (GHz)
- el (number, sequence, or numpy.ndarray) – Elevation angle of the receiver points
- tau (number, sequence, or numpy.ndarray) – Polarization tilt angle relative to the horizontal (degrees). Tau = 45 deg for circular polarization)
Returns: - k (number) – Coefficient k (non-dimensional)
- α (number) – Coefficient α (non-dimensional)
References
[1] Rain height model for prediction methods: https://www.itu.int/rec/R-REC-P.838/en
-
itur.models.itu838.
rain_specific_attenuation
(R, f, el, tau)[source]¶ Compute the specific attenuation γ_R (dB/km) given the rainfall rate.
A method to compute the specific attenuation γ_R (dB/km) from rain. The value is obtained from the rainfall rate R (mm/h) using a power law relationship.
\[\gamma_R = k R^\alpha\]Parameters: - R (number, sequence, numpy.ndarray or Quantity) – Rain rate (mm/h)
- f (number or Quantity) – Frequency (GHz)
- el (number, sequence, or numpy.ndarray) – Elevation angle of the receiver points
- tau (number, sequence, or numpy.ndarray) – Polarization tilt angle relative to the horizontal (degrees). Tau = 45 deg for circular polarization)
Returns: γ_R – Specific attenuation from rain (dB/km)
Return type: numpy.ndarray
References
[1] Rain height model for prediction methods: https://www.itu.int/rec/R-REC-P.838/en
This Recommendation provides a method to predict the rain height for propagation prediction.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.839 | [PDF] | 2013-09 |
Rain height model for prediction methods | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.839-4 | [PDF] | 09/2013 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.839-4 | [PDF] | 09/2013 |
Recommendation ITU-R P.839-3 | [PDF] | 02/2001 |
Recommendation ITU-R P.839-2 | [PDF] | 10/1999 |
Recommendations not implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.839-1 | [PDF] | 08/1997 |
Recommendation ITU-R P.839-0 | [PDF] | 03/1992 |
The mean annual rain height above mean sea level, hR, may be obtained from the 0° C isotherm as:
for areas of the world where no specific information is available, the mean annual 0° C isotherm height above mean sea level, h0, is an integral part of this Recommendation. The data is provided from 0° to 360° in longitude and from +90° to –90° in latitude. For a location different from the grid-points, the mean annual 0° C isotherm height above mean sea level at the desired location can be derived by performing a bilinear interpolation on the values at the four closest gridpoints.
-
itur.models.itu839.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.839 recommendation currently being used.
This function changes the model used for the ITU-R P.839 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 4: Activates recommendation ITU-R P.839-4 (09/2013) (Current version)
- 3: Activates recommendation ITU-R P.839-3 (02/01) (Superseded)
- 2: Activates recommendation ITU-R P.839-2 (10/99) (Superseded)
-
itur.models.itu839.
get_version
()[source]¶ Obtain the version of the ITU-R P.839 recommendation currently being used.
Returns: version – Version currently being used. Return type: int
-
itur.models.itu839.
isoterm_0
(lat, lon)[source]¶ Estimate the zero degree Celsius isoterm height for propagation prediction.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns: h0 – Zero degree Celsius isoterm height (km)
Return type: numpy.ndarray
References
[1] Rain height model for prediction methods: https://www.itu.int/rec/R-REC-P.839/en
-
itur.models.itu839.
rain_height
(lat, lon)[source]¶ Estimate the annual mean rain height for propagation prediction.
The mean annual rain height above mean sea level, \(h_R\), may be obtained from the 0° C isotherm as:
\[h_R = h_0 + 0.36 \qquad \text{km}\]Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns: hR – Annual mean rain height (km)
Return type: numpy.ndarray
References
[1] Rain height model for prediction methods: https://www.itu.int/rec/R-REC-P.839/en
This Recommendation provides methods to predict the attenuation due to clouds and fog on Earth-space paths.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.840 | [PDF] | 2019-08 |
Attenuation due to clouds and fog | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.840-8 | [PDF] | 08/2019 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.840-8 | [PDF] | 08/2019 |
Recommendation ITU-R P.840-7 | [PDF] | 12/2017 |
Recommendation ITU-R P.840-6 | [PDF] | 09/2013 |
Recommendation ITU-R P.840-5 | [PDF] | 02/2012 |
Recommendation ITU-R P.840-4 | [PDF] | 10/2009 |
Recommendations not implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.840-3 | [PDF] | 10/1999 |
Recommendation ITU-R P.840-2 | [PDF] | 08/1997 |
Recommendation ITU-R P.840-1 | [PDF] | 08/1994 |
For clouds or fog consisting entirely of small droplets, generally less than 0.01 cm, the Rayleigh approximation is valid for frequencies below 200 GHz and it is possible to express the attenuation in terms of the total water content per unit volume. Thus the specific attenuation within a cloud or fog can be written as:
- where:
- \(\gamma_c\) : specific attenuation (dB/km) within the cloud;
- \(K_l\) : specific attenuation coefficient ((dB/km)/(g/m3));
- \(M\) : liquid water density in the cloud or fog (g/m3).
- \(f\) : frequency (GHz).
- \(T\) : cloud liquid water temperature (K).
At frequencies of the order of 100 GHz and above, attenuation due to fog may be significant. The liquid water density in fog is typically about 0.05 g/m3 for medium fog (visibility of the order of 300 m) and 0.5 g/m3 for thick fog (visibility of the order of 50 m).
-
itur.models.itu840.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.840 recommendation currently being used.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 8: Activates recommendation ITU-R P.840-8 (08/19) (Current version)
- 7: Activates recommendation ITU-R P.840-7 (12/17) (Superseded)
- 6: Activates recommendation ITU-R P.840-6 (09/13) (Superseded)
- 5: Activates recommendation ITU-R P.840-5 (02/12) (Superseded)
- 4: Activates recommendation ITU-R P.840-4 (10/09) (Superseded)
-
itur.models.itu840.
get_version
()[source]¶ Obtain the version of the ITU-R P.840 recommendation currently being used.
Returns: version – Version currently being used. Return type: int
-
itur.models.itu840.
specific_attenuation_coefficients
(f, T)[source]¶ Compute the specific attenuation coefficient for cloud attenuation.
A method to compute the specific attenuation coefficient. The method is based on Rayleigh scattering, which uses a double-Debye model for the dielectric permittivity of water.
This model can be used to calculate the value of the specific attenuation coefficient for frequencies up to 1000 GHz:
Parameters: - f (number) – Frequency (GHz)
- T (number) – Temperature (degrees C)
Returns: Kl – Specific attenuation coefficient (dB/km)
Return type: numpy.ndarray
References
[1] Attenuation due to clouds and fog: https://www.itu.int/rec/R-REC-P.840/en
-
itur.models.itu840.
columnar_content_reduced_liquid
(lat, lon, p)[source]¶ Compute the total columnar contents of reduced cloud liquid water.
A method to compute the total columnar content of reduced cloud liquid water, Lred (kg/m2), exceeded for p% of the average year
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- p (number) – Percentage of time exceeded for p% of the average year
Returns: Lred – Total columnar content of reduced cloud liquid water, Lred (kg/m2), exceeded for p% of the average year
Return type: numpy.ndarray
References
[1] Attenuation due to clouds and fog: https://www.itu.int/rec/R-REC-P.840/en
-
itur.models.itu840.
cloud_attenuation
(lat, lon, el, f, p, Lred=None)[source]¶ Compute the cloud attenuation in a slant path.
A method to estimate the attenuation due to clouds along slant paths for a given probability. If local measured data of the total columnar content of cloud liquid water reduced to a temperature of 273.15 K, Lred, is available from other sources, (e.g., from ground radiometric measurements, Earth observation products, or meteorological numerical products), the value should be used directly.
The value of the cloud attenuation is computed as:
\[A=\frac{L_{red}(\text{lat}, \text{lon}, p, T) \cdot K_l(f, T)}{\sin(\text{el})}\]- where:
- \(L_{red}\) : total columnar content of liquid water reduced to a temperature of 273.15 K (kg/m2);
- \(K_l\) : specific attenuation coefficient ((dB/km)/(g/m3));
- \(el\) : path elevation angle (deg).
- \(f\) : frequency (GHz).
- \(p\) : Percentage of time exceeded for p% of the average year (%).
- \(T\) : temperature (K). Equal to 273.15 K.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- el (number, sequence, or numpy.ndarray) – Elevation angle of the receiver points (deg)
- f (number) – Frequency (GHz)
- p (number) – Percentage of time exceeded for p% of the average year
- Lred (number) – Total columnar contents of reduced cloud liquid water. (kg/m2)
Returns: A – Cloud attenuation, A (dB), exceeded for p% of the average year
Return type: numpy.ndarray
References
[1] Attenuation due to clouds and fog: https://www.itu.int/rec/R-REC-P.840/en
-
itur.models.itu840.
lognormal_approximation_coefficient
(lat, lon)[source]¶ Total columnar contents of cloud liquid water distribution coefficients.
The annual statistics of the total columnar content of reduced cloud liquid water content can be approximated by a log-normal distribution. This function computes the coefficients for the mean, \(m\), standard deviation, \(\sigma\), and probability of non-zero reduced total columnar content of cloud liquid water, \(Pclw\), for such the log-normal distribution.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns: - m (numpy.ndarray) – Mean of the lognormal distribution
- σ (numpy.ndarray) – Standard deviation of the lognormal distribution
- Pclw (numpy.ndarray) – Probability of cloud liquid water of the lognormal distribution
References
[1] Attenuation due to clouds and fog: https://www.itu.int/rec/R-REC-P.840/en
This Recommendation provides a guide to the Recommendations of Radiocommunication Study Group 3 which contain propagation prediction methods. It advises users on the most appropriate methods for particular applications as well as the limits, required input information, and output for each of these methods.
Title | Approved in | |
---|---|---|
Recommendation ITU-R P.1144 | [PDF] | 2019-08 |
Guide to the application of the propagation methods of Radiocommunication Study Group 3 | ||
Latest Recommendation | Date | |
Recommendation ITU-R P.1144-10 | [PDF] | 08/2019 |
Recommendation ITU-R P.1144 provides . In particular, the recommendation describes how to perform bi-linear and bi-cubic interpolation over the geophysical maps included in other recommendations.
Interpolation methods for the geophysical properties used to compute propagation effects. These methods are based on those in Recommendation ITU-R P.1144-7.
References
[1] Guide to the application of the propagation methods of Radiocommunication Study Group 3: https://www.itu.int/rec/R-REC-P.1144/en
-
itur.models.itu1144.
is_regular_grid
(lats_o, lons_o)[source]¶ Determinere whether the grids in lats_o and lons_o are both regular grids or not.
A grid is regular if the difference (column-wise or row-wise) between consecutive values is constant across the grid.
Parameters: - lats_o (numpy.ndarray) – Grid of latitude coordinates
- lons_o (numpy.ndarray) – Grid of longitude coordinates
Returns: is_regular
Return type: boolean
-
itur.models.itu1144.
nearest_2D_interpolator
(lats_o, lons_o, values)[source]¶ Produces a 2D interpolator function using the nearest value interpolation method. If the grids are regular grids, uses the scipy.interpolate.RegularGridInterpolator, otherwise, scipy.intepolate.griddata
Values can be interpolated from the returned function as follows:
f = nearest_2D_interpolator(lat_origin, lon_origin, values_origin) interp_values = f(lat_interp, lon_interp)
Parameters: - lats_o (numpy.ndarray) – Latitude coordinates of the values usde by the interpolator
- lons_o (numpy.ndarray) – Longitude coordinates of the values usde by the interpolator
- values (numpy.ndarray) – Values usde by the interpolator
Returns: interpolator – Nearest neighbour interpolator function
Return type: function
-
itur.models.itu1144.
bilinear_2D_interpolator
(lats_o, lons_o, values)[source]¶ Produces a 2D interpolator function using the bilinear interpolation method. If the grids are regular grids, uses the scipy.interpolate.RegularGridInterpolator, otherwise, scipy.intepolate.griddata
Values can be interpolated from the returned function as follows:
f = nearest_2D_interpolator(lat_origin, lon_origin, values_origin) interp_values = f(lat_interp, lon_interp)
Parameters: - lats_o (numpy.ndarray) – Latitude coordinates of the values usde by the interpolator
- lons_o (numpy.ndarray) – Longitude coordinates of the values usde by the interpolator
- values (numpy.ndarray) – Values usde by the interpolator
Returns: interpolator – Bilinear interpolator function
Return type: function
-
itur.models.itu1144.
bicubic_2D_interpolator
(lats_o, lons_o, values)[source]¶ Produces a 2D interpolator function using the bicubic interpolation method. Uses the scipy.intepolate.griddata method.
Values can be interpolated from the returned function as follows:
f = nearest_2D_interpolator(lat_origin, lon_origin, values_origin) interp_values = f(lat_interp, lon_interp)
Parameters: - lats_o (numpy.ndarray) – Latitude coordinates of the values usde by the interpolator
- lons_o (numpy.ndarray) – Longitude coordinates of the values usde by the interpolator
- values (numpy.ndarray) – Values usde by the interpolator
Returns: interpolator – Bicubic interpolator function
Return type: function
This Recommendation contains monthly and annual maps of mean surface temperature that are recommended for the prediction of statistics of different propagation effects such as rainfall rate, rain attenuation and gaseous attenuation due to water vapour and oxygen.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.1510 | [PDF] | 2017-06 |
Mean surface temperature | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.1510-1 | [PDF] | 06/2017 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.1510-1 | [PDF] | 06/2017 |
Recommendation ITU-R P.1510-0 | [PDF] | 02/2001 |
Recommendation ITU-R P.1510 contains monthly and annual maps of mean surface temperature that are recommended for the prediction of statistics of different propagation effects such as rainfall rate, rain attenuation and gaseous attenuation due to water vapour and oxygen.
The monthly and annual mean surface temperature data (K) at 2 m above the surface of the Earth is an integral part of this Recommendation, and is provided as a grid. The latitude grid is from −90° N to +90° N in 0.75° steps, and the longitude grid is from −180° E to +180° E in 0.75° steps.
The monthly mean surface temperature maps have been derived from 36 years (1979-2014) of European Centre of Medium-range Weather Forecast (ECMWF) ERA Interim data, and the annual mean surface temperature map is the average of the monthly mean surface temperature maps weighted by the relative number of days in each calendar month.
-
itur.models.itu1510.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.1510 recommendation currently being used.
This function changes the model used for the ITU-R P.1510 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 1: Activates recommendation ITU-R P.1510-1 (06/17) (Current version)
- 0: Activates recommendation ITU-R P.1510-0 (02/01) (Current version)
-
itur.models.itu1510.
get_version
()[source]¶ Obtain the version of the ITU-R P.1510 recommendation currently being used.
Returns: version – Version currently being used. Return type: int
-
itur.models.itu1510.
surface_mean_temperature
(lat, lon)[source]¶ Annual mean surface temperature (K) at 2 m above the surface of the Earth.
A method to estimate the annual mean surface temperature (K) at 2 m above the surface of the Earth
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns: annual_temperature – Annual mean surface temperature (K). Same dimensions as lat and lon.
Return type: numpy.ndarray
References
[1] Annual mean surface temperature: https://www.itu.int/rec/R-REC-P.1510/en
-
itur.models.itu1510.
surface_month_mean_temperature
(lat, lon, m)[source]¶ Monthly mean surface temperature (K) at 2 m above the surface of the Earth.
A method to estimate the monthly mean surface temperature (K) at 2 m above the surface of the Earth
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- m (integer) – Index of the month (1=Jan, 2=Feb, 3=Mar, 4=Apr, …)
Returns: monthly_temperature – Monthly mean surface temperature (K). Same dimensions as lat and lon.
Return type: numpy.ndarray
References
[1] Annual mean surface temperature: https://www.itu.int/rec/R-REC-P.1510/en
This Recommendation provides global topographical data, information on geographic coordinates, and height data for the prediction of propagation effects for Earth-space paths in ITU-R recommendations.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.1511 | [PDF] | 2019-08 |
Topography for Earth-space propagation modelling | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.1511-2 | [PDF] | 08/2019 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.1511-2 | [PDF] | 08/2019 |
Recommendation ITU-R P.1511-1 | [PDF] | 07/2015 |
Recommendation ITU-R P.1511-0 | [PDF] | 02/2001 |
This model shall be used to obtain the height above mean sea level when no local data are available or when no data with a better spatial resolution is available.
The values of topographic height of the surface of the Earth above mean sea level (km) are an integral part of this Recommendation. The data is provided on a 1/12° grid in both latitude and longitude. For a location different from the grid points, the height above mean sea level at the desired location can be obtained by performing a bi-cubic interpolation on the values at the sixteen closest grid points
-
itur.models.itu1511.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.1511 recommendation currently being used.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 1: Activates recommendation ITU-R P.1511-1 (07/15) (Current version)
- 0: Activates recommendation ITU-R P.1511-0 (02/01) (Superseded)
-
itur.models.itu1511.
get_version
()[source]¶ Obtain the version of the ITU-R P.1511 recommendation currently being used.
Returns: version – Version currently being used. Return type: int
-
itur.models.itu1511.
topographic_altitude
(lat, lon)[source]¶ Topographical height (km) above mean sea level of the surface of the Earth.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns: altitude – Topographic altitude (km)
Return type: numpy.ndarray
References
[1] Topography for Earth-to-space propagation modelling: https://www.itu.int/rec/R-REC-P.1511/en
This Recommendation provides prediction methods of fade dynamics on Earth-space paths.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.1623 | [PDF] | 2005-03 |
Prediction method of fade dynamics on Earth-space paths | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.1623-1 | [PDF] | 03/2005 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.1623-1 | [PDF] | 03/2005 |
Recommendation ITU-R P.1623-0 | [PDF] | 04/2003 |
In the design of a variety of telecommunication systems, the dynamic characteristics of fading due to atmospheric propagation are of concern to optimize system capacity and meet quality and reliability criteria. Examples are fixed networks that include a space segment and systems that apply fade mitigation or resource sharing techniques.
Several temporal scales can be defined, and it is useful to have information on fade slope, fade duration and interfade duration statistics for a given attenuation level. Fade duration is defined as the time interval between two crossings above the same attenuation threshold whereas interfade duration is defined as the time interval between two crossings below the same attenuation threshold. Fade slope is defined as the rate of change of attenuation with time.
Of particular interest in the context of availability criteria is the distinction between fades of shorter and longer duration than 10 s. Knowledge of the distribution of fade duration as a function of fade depth is also a prerequisite for the application of risk concepts in the provision of telecommunication services.
In addition, information about the expected fade slope is essential to assess the required minimum tracking rate of a fade mitigation system.
-
itur.models.itu1623.
Qfunc
(z)[source]¶ Tail distribution function of the standard normal distribution.
Q(z) is the probability that a normal (Gaussian) random variable will a value larger than z standard deviations
The Q-function can be expressed in terms of the error function as
\[Q(z) = \frac{1}{2} \left(1 - erf\left(\frac{z}{\sqrt{2}}\right)\right)\]Parameters: z (float) – Value to evaluate Q at. Returns: q – Value of the Q function evaluated at z. Return type: float
-
itur.models.itu1623.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.1623 recommendation currently being used.
This function changes the model used for the ITU-R P.1623 recommendation to a different version.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 1: Activates recommendation ITU-R P.1623-1 (03/2005) (Current version)
- 0: Activates recommendation ITU-R P.1623-0 (04/2003) (Superseded)
-
itur.models.itu1623.
get_version
()[source]¶ Obtain the version of the ITU-R P.1623 recommendation currently being used.
Returns: version – Version currently being used. Return type: int
-
itur.models.itu1623.
fade_duration_probability
(D, A, el, f)[source]¶ Compute the probability of occurrence of fades of duration longer than D.
Compute the probability of occurrence of fades of duration d longer than D (s), given that the attenuation a is greater than A (dB).
This probability can be estimated from the ratio of the number of fades of duration longer than D to the total number of fades observed, given that the threshold A is exceeded.
Parameters: - D (number, sequence, or numpy.ndarray) – Event durations, array, (s)
- A (number) – Attenuation threshold, scalar, (dB)
- el (number) – Elevation angle towards the satellite, deg (5 - 60)
- f (number) – Frequency, GHz (between 10 and 50 GHz)
Returns: p – Probability of occurence of fade events of duration d longer than D given a>A, P(d > D|a > A)
Return type: number, sequence, or numpy.ndarray
References
[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en
-
itur.models.itu1623.
fade_duration_cummulative_probability
(D, A, el, f)[source]¶ Compute the cumulative probability of exceedance of fades of duration longer than D.
Compute the cummulative exceedance probability F(d > D|a > A), the total fraction (between 0 and 1) of fade time due to fades of duration d longer than D (s), given that the attenuation a is greater than A (dB).
Parameters: - D (number, sequence, or numpy.ndarray) – Event durations, array, (s)
- A (number) – Attenuation threshold, scalar, (dB)
- el (number) – Elevation angle towards the satellite, deg (5 - 60)
- f (number) – Frequency, GHz (between 10 and 50 GHz)
Returns: F – Cumulative probability of exceedance, total fraction of fade time due to fades of d > D
Return type: number, sequence, or numpy.ndarray
References
[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en
-
itur.models.itu1623.
fade_duration_number_fades
(D, A, el, f, T_tot)[source]¶ Compute the number of fades of duration longer than D.
For a given reference period, the number of fades of duration longer D is estimated by multiplying the probability of occurrence P(d > D|a > A) by the total number of fades exceeding the threshold, Ntot(A).
Parameters: - D (number, sequence, or numpy.ndarray) – Event durations, array, (s)
- A (number) – Attenuation threshold, scalar, (dB)
- el (number) – Elevation angle towards the satellite, deg (5 - 60)
- f (number) – Frequency, GHz (between 10 and 50 GHz)
- T_tot (number) –
Total fade time from cumulative distribution (P(A)/100)*Reference time period. T_tot should be obtained from local data. If this long-term statistic is not available, an estimate can be calculated from Recommendation ITU-R P.618. In this case the procedure consists in calculating the CDF of total attenuation, deriving the percentage of time the considered attenuation threshold A is exceeded and then the associated total exceedance time T_tot for the reference period considered.
For a reference period of a year, T_tot = ((100-availability_in_pctg)/100)*365.25*24*3600 [s]
Returns: N – threshold A
Return type: Total number of fades of duration d longer than D, for a given
References
[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en
-
itur.models.itu1623.
fade_duration_total_exceedance_time
(D, A, el, f, T_tot)[source]¶ Compute the total exceedance time of fades of duration longer than D.
The total exceedance time due to fade events of duration longer than D is obtained by multiplying the fraction of time F(d > D|a > A) by the total time that the threshold is exceeded, Ttot(A).
Parameters: - D (number, sequence, or numpy.ndarray) – Event durations, array, (s)
- A (number) – Attenuation threshold, scalar, (dB)
- el (number) – Elevation angle towards the satellite, deg (5 - 60)
- f (number) – Frequency, GHz (between 10 and 50 GHz)
- T_tot (number) –
Total fade time from cumulative distribution (P(A)/100)*Reference time period. T_tot should be obtained from local data. If this long-term statistic is not available, an estimate can be calculated from Recommendation ITU-R P.618. In this case the procedure consists in calculating the CDF of total attenuation, deriving the percentage of time the considered attenuation threshold A is exceeded and then the associated total exceedance time T_tot for the reference period considered.
For a reference period of a year, T_tot = ((100-availability_in_pctg)/100)*365.25*24*3600 [s]
Returns: T
Return type: Total fading time due to fades of d > D for A threshold.
References
[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en
-
itur.models.itu1623.
fade_duration
(D, A, el, f, T_tot)[source]¶ Compute the probability of occurrence of fades of duration longer than D.
Compute the probability of occurrence of fades of duration d longer than D (s), given that the attenuation a is greater than A (dB) and F(d > D|a > A), the cumulative exceedance probability, or, equivalently, the total fraction (between 0 and 1) of fade time due to fades of duration d longer than D (s), given that the attenuation a is greater than A (dB).
The function also returns other parameters associated to the fade duration prediction method. See ITU-R P.1623 Annex 1 Section 2.2
Parameters: - D (number, sequence, or numpy.ndarray) – Event durations, array, (s)
- A (number) – Attenuation threshold, scalar, (dB)
- el (number) – Elevation angle towards the satellite, deg (5 - 60)
- f (number) – Frequency, GHz (between 10 and 50 GHz)
- T_tot (number) –
Total fade time from cumulative distribution (P(A)/100)*Reference time period. T_tot should be obtained from local data. If this long-term statistic is not available, an estimate can be calculated from Recommendation ITU-R P.618. In this case the procedure consists in calculating the CDF of total attenuation, deriving the percentage of time the considered attenuation threshold A is exceeded and then the associated total exceedance time T_tot for the reference period considered.
For a reference period of a year, T_tot = ((100-availability_in_pctg)/100)*365.25*24*3600 [s]
Returns: - p (probability of occurence of fade events of) – duration d longer than D given a>A, P(d > D|a > A)
- F (cumulative probability of exceedance, total) – fraction of fade time due to fades of d > D
- N (total number of fades of duration d longer than D, for a given) – threshold A
- T (total fading time due to fades of d > D for A threshold)
References
[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en
-
itur.models.itu1623.
fade_slope
(z, A, f_B, delta_t)[source]¶ Compute the probability of exceeding a valueo f fade slope.
Fade slope is defined as the rate of change of attenuation with time information about the expected fade slope is essential to assess the required minimum tracking rate of a fade mitigation system. The model is valid for the following ranges of parameters:
- frequencies from 10 to 30 GHz
- elevation angles from 10° to 50°.
See ITU-R P.1623 Annex 1 Section 3.2
Parameters: - z (number, sequence, or numpy.ndarray) – array of fade slope values (dB/s)
- A (number) – attenuation threshold, scalar, dB (range 0 - 20 dB)
- f_B (number) – 3 dB cut-off frequency of the low pass filter (Hz, range 0.001 - 1) used to remove tropospheric scintillation and rapid variations of rain attenuation from the signal. Experimental results show that a 3 dB cut-off frequency of 0.02 Hz allows scintillation and rapid variations of rain attenuation to be filtered out adequately.
- delta_t (number) – Time interval length over which fade slope is calculated (s), 2-200 s
Returns: - p (conditional probability (probability density function)) – that the fade slope is equal to the fade slope for a given attenuation value, A
- P (conditional probability (complementary cumulative) – distribution function)that the fade slope is exceeded for a given attenuation value, A
- P2 (conditional probability that the absolute value of) – the fade slope is exceeded for a given attenuation value, A
- sigma_z (standard deviation of the conditional fade slope)
- Remark
- ——
- The output is an array of 4 elements.
Example
import itur.models.itu1623 as itu1623 z = np.linspace(-2,2,100) A = 10 f_B = 0.02 delta_t = 1 p, P, P2, sigma_z = itu1623.fade_slope(z, A, f_B, delta_t)
References
[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en
-
itur.models.itu1623.
fade_depth
(N_target, D_target, A, PofA, el, f)[source]¶ Compute the maximum fade a link must tolerate given a target outage intensity value (number of events) and a target duration of event.
The fade depth is computed by numerical solution of the fade_duration problem.
See ITU-R P.1623 Annex 1 Section 3.2
Parameters: - N_target (int) – Target outage intensity (scalar)
- D_target (int) – Event duration (scalar)
- A (number, sequence, or numpy.ndarray) – Attenuation distribution (CDF, A) for the link under analysis
- PofA (number, sequence, or numpy.ndarray) – Probability that A is exceeded (CDF, probability)
- el (number) – Elevation angle (deg)
- f (number) – Frequency (GHz)
Returns: - a_min (number) – Minimum attenuation the link must tolerate to meet the OI target
- Remark
- ——
- This function uses scipy’s fsolve as optimizer.
Example
import itur.models.itu1623 as itu1623 N_target = 25 D_target = 60 PofA = np.array([50, 30, 20, 10, 5, 3, 2, 1, .5, .3, .2, .1, .05, .03, .02, .01, .005, .003, .002, .001]) A = np.array([0.4, 0.6, 0.8, 1.8, 2.70, 3.5, 4.20, 5.7, 7.4, 9, 10.60, 14, 18.3, 22.3, 25.8, 32.6, 40.1, 46.1, 50.8, 58.8]) el = 38.5 f = 28 itu1623.fade_depth(N_target, D_target, A, PofA, el, f) # 21.6922280
References
[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en
This Recommendation provides methods to synthesize rain attenuation and scintillation for terrestrial and Earth-space paths and total attenuation and tropospheric scintillation for Earth-space paths.
Title | Latest approved in | |
---|---|---|
Recommendation ITU-R P.1853 | [PDF] | 2019-08 |
Time series synthesis of tropospheric impairments | ||
Current recommendation version (In force) | Date | |
Recommendation ITU-R P.1853-2 | [PDF] | 08/2019 |
Recommendations implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.1853-1 | [PDF] | 02/2012 |
Recommendation ITU-R P.1853-0 | [PDF] | 10/2009 |
Recommendations not implemented in ITU-Rpy | Date | |
Recommendation ITU-R P.1853-2 | [PDF] | 08/2019 |
The planning and design of terrestrial and Earth-space radiocommunication systems requires the ability to synthesize the time dynamics of the propagation channel. For example, this information may be required to design various fade mitigation techniques such as, inter alia, adaptive coding and modulation, and transmit power control.
The methodology presented in this Recommendation provides a technique to synthesize rain attenuation and scintillation time series for terrestrial and Earth-space paths and total attenuation and tropospheric scintillation for Earth-space paths that approximate the rain attenuation statistics at a particular location.
-
itur.models.itu1853.
change_version
(new_version)[source]¶ Change the version of the ITU-R P.1853 recommendation currently being used.
Parameters: new_version (int) – Number of the version to use. Valid values are:
- 1: Activates recommendation ITU-R P.1853-1 (02/12) (Current version)
- 0: Activates recommendation ITU-R P.1853-0 (10/09) (Superseded)
-
itur.models.itu1853.
get_version
()[source]¶ Obtain the version of the ITU-R P.1853 recommendation currently being used.
Returns: version – Version currently being used. Return type: int
-
itur.models.itu1853.
set_seed
(seed)[source]¶ Set the seed used to generate random numbers.
Parameters: seed (int) – Seed used to generate random numbers
-
itur.models.itu1853.
rain_attenuation_synthesis
(lat, lon, f, el, hs, Ns, Ts=1, tau=45, n=None)[source]¶ A method to generate a synthetic time series of rain attenuation values.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- f (number or Quantity) – Frequency (GHz)
- el (sequence, or number) – Elevation angle (degrees)
- hs (number, sequence, or numpy.ndarray, optional) – Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
- Ns (int) – Number of samples
- Ts (int) – Time step between consecutive samples (seconds)
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
- n (list, np.array, optional) – Additive White Gaussian Noise used as input for the
Returns: rain_att – Synthesized rain attenuation time series (dB)
Return type: numpy.ndarray
References
[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.1853/en
-
itur.models.itu1853.
scintillation_attenuation_synthesis
(Ns, f_c=0.1, Ts=1)[source]¶ A method to generate a synthetic time series of scintillation attenuation values.
Parameters: - Ns (int) – Number of samples
- f_c (float) – Cut-off frequency for the low pass filter
- Ts (int) – Time step between consecutive samples (seconds)
Returns: sci_att – Synthesized scintilation attenuation time series (dB)
Return type: numpy.ndarray
References
[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.1853/en
-
itur.models.itu1853.
integrated_water_vapour_synthesis
(lat, lon, Ns, Ts=1, n=None)[source]¶ The time series synthesis method generates a time series that reproduces the spectral characteristics and the distribution of water vapour content.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- Ns (int) – Number of samples
- Ts (int) – Time step between consecutive samples (seconds)
- n (list, np.array, optional) – Additive White Gaussian Noise used as input for the
Returns: L – Synthesized water vapour content time series (kg/m2)
Return type: numpy.ndarray
References
[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.1853/en
-
itur.models.itu1853.
cloud_liquid_water_synthesis
(lat, lon, Ns, Ts=1, n=None)[source]¶ The time series synthesis method generates a time series that reproduces the spectral characteristics, rate of change and duration statistics of cloud liquid content events.
Parameters: - lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
- lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
- Ns (int) – Number of samples
- Ts (int) – Time step between consecutive samples (seconds)
- n (list, np.array, optional) – Additive White Gaussian Noise used as input for the
Returns: V – Synthesized cloud liquid water time series (mm)
Return type: numpy.ndarray
References
[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.1853/en
-
itur.models.itu1853.
total_attenuation_synthesis
(lat, lon, f, el, p, D, Ns, Ts=1, hs=None, tau=45, eta=0.65, rho=None, H=None, P=None, hL=1000, return_contributions=False)[source]¶ The time series synthesis method generates a time series that reproduces the spectral characteristics, rate of change and duration statistics of the total atmospheric attenuation events.
The time series is obtained considering the contributions of gaseous, cloud, rain, and scintillation attenuation.
Parameters: - lat (number) – Latitudes of the receiver points
- lon (number) – Longitudes of the receiver points
- f (number or Quantity) – Frequency (GHz)
- el (number) – Elevation angle (degrees)
- p (number) – Percentage of the time the rain attenuation value is exceeded.
- D (number or Quantity) – Physical diameter of the earth-station antenna (m)
- Ns (int) – Number of samples
- Ts (int) – Time step between consecutive samples (seconds)
- tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
- hs (number, sequence, or numpy.ndarray, optional) – Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
- eta (number, optional) – Antenna efficiency. Default value 0.5 (conservative estimate)
- rho (number or Quantity, optional) – Water vapor density (g/m3). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.836.
- H (number, sequence, or numpy.ndarray, optional) – Average surface relative humidity (%) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
- P (number, sequence, or numpy.ndarray, optional) – Average surface pressure (hPa) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
- hL (number, optional) – Height of the turbulent layer (m). Default value 1000 m
- return_contributions (bool, optional) – Determines whether individual contributions from gases, rain, clouds and scintillation are returned in addition ot the total attenuation (True), or just the total atmospheric attenuation (False). Default is False
Returns: - A (Quantity) – Synthesized total atmospheric attenuation time series (dB)
- Ag, Ac, Ar, As, A (tuple) – Synthesized Gaseous, Cloud, Rain, Scintillation contributions to total attenuation time series, and synthesized total attenuation time seires (dB).
References
[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.1853/en
It is also advisable that developers use the index, module index, and search page below for quick access to specific functions:
Validation¶
ITU-Rpy has been validated using the ITU Validation examples (rev 5.1) , which provides test cases for parts of Recommendations ITU-R P.453-14, P.618-13, P.676-12, P.836-6, P.837-7, P.838-3, P.839-4, P.840-8, P.1511-2, P.1623-1.
For each part of the recommendation that has a counterpart function in ITU-Rpy, the results of the executing the ITUR-py function are compared against the values provided in the ITU Validation examples. The absolute and relative errors between these two quantities are computed, and each test case is color-coded (green = pass, errors are negligible, red = fail, errors are above 0.01%).
The links below show the validation results for each of the recommendations:
Validation results ITU-R P.453-14¶
This page contains the validation examples for Recommendation ITU-R P.453-14: TBD.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Function map_wet_term_radio_refractivity¶
The table below contains the results of testing function map_wet_term_radio_refractivity
.
The test cases were extracted from spreadsheet ITURP453-14_Nwet.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.133 # (°N)
lon = 101.7 # (°E)
p = 50.0 # (%)
# Make call to test-function map_wet_term_radio_refractivity
itur_val = itur.models.itu453.map_wet_term_radio_refractivity(lat=lat, lon=lon, p=p)
# Compute error with respect to value in ITU example file
ITU_example_val = 128.1408003 # nan
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | p (%) | ITU Validation nan | ITU-Rpy Result nan | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|
models.itu453.map_wet_term_radio_refractivity | 3.133 | 101.70 | 50.0 | 128.140800 | 128.140800 | 3.33e-08 | 0.000 |
models.itu453.map_wet_term_radio_refractivity | 22.900 | -43.23 | 50.0 | 104.358475 | 104.358475 | 3.33e-08 | 0.000 |
models.itu453.map_wet_term_radio_refractivity | 23.000 | 30.00 | 50.0 | 36.471667 | 36.471667 | 3.33e-09 | 0.000 |
models.itu453.map_wet_term_radio_refractivity | 25.780 | -80.22 | 50.0 | 113.273867 | 113.273867 | 4.26e-14 | 0.000 |
models.itu453.map_wet_term_radio_refractivity | 28.717 | 77.30 | 50.0 | 75.660135 | 75.660135 | 3.33e-09 | 0.000 |
models.itu453.map_wet_term_radio_refractivity | 33.940 | 18.43 | 50.0 | 80.140160 | 80.140160 | -4.44e-09 | -0.000 |
models.itu453.map_wet_term_radio_refractivity | 41.900 | 12.49 | 50.0 | 61.218900 | 61.218900 | -4.44e-09 | -0.000 |
models.itu453.map_wet_term_radio_refractivity | 51.500 | -0.14 | 50.0 | 50.389262 | 50.389262 | -2.22e-09 | -0.000 |
Validation results ITU-R P.618-13¶
This page contains the validation examples for Recommendation ITU-R P.618-13: Propagation data and prediction methods required for the design of Earth-space telecommunication systems.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function rain_cross_polarization_discrimination¶
The table below contains the results of testing function rain_cross_polarization_discrimination
.
The test cases were extracted from spreadsheet ITURP618-13_A_xpd.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
f = 14.25 # (GHz)
el = 31.07699124 # (°)
p = 1.0 # (%)
tau = 0.0 # (°)
Ap = 0.49531707 # (dB)
# Make call to test-function rain_cross_polarization_discrimination
itur_val = itur.models.itu618.rain_cross_polarization_discrimination(f=f, el=el, p=p, tau=tau, Ap=Ap)
# Compute error with respect to value in ITU example file
ITU_example_val = 49.47769944 # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | f (GHz) | el (°) | p (%) | tau (°) | Ap (dB) | ITU Validation (dB) | ITU-Rpy Result (dB) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|---|
models.itu618.rain_cross_polarization_discrimination | 14.25 | 31.076991 | 1.000 | 0.0 | 0.495317 | 49.477699 | 49.477699 | -5.20e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 40.232036 | 1.000 | 0.0 | 0.623263 | 49.377149 | 49.377149 | 2.78e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 46.359693 | 1.000 | 0.0 | 0.421017 | 53.938571 | 53.938571 | -3.09e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 31.076991 | 0.100 | 0.0 | 2.185847 | 40.203026 | 40.203026 | 8.35e-10 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 40.232036 | 0.100 | 0.0 | 2.696765 | 40.260014 | 40.260014 | -5.62e-10 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 46.359693 | 0.100 | 0.0 | 1.913388 | 44.682657 | 44.682657 | -2.50e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 31.076991 | 0.010 | 0.0 | 6.798072 | 32.887586 | 32.887586 | 3.19e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 40.232036 | 0.010 | 0.0 | 8.223265 | 33.120273 | 33.120273 | 2.67e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 46.359693 | 0.010 | 0.0 | 5.941806 | 37.629187 | 37.629187 | -3.61e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 31.076991 | 0.001 | 0.0 | 14.899822 | 28.054505 | 28.054505 | -4.09e-10 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 40.232036 | 0.001 | 0.0 | 17.671558 | 28.481053 | 28.481053 | 1.58e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 46.359693 | 0.001 | 0.0 | 12.981517 | 33.075103 | 33.075103 | 1.53e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 31.076991 | 1.000 | 0.0 | 2.207786 | 44.190517 | 44.190517 | -2.90e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 40.232036 | 1.000 | 0.0 | 2.823466 | 43.836439 | 43.836439 | -3.21e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 46.359693 | 1.000 | 0.0 | 1.960636 | 48.369649 | 48.369649 | 8.79e-10 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 31.076991 | 0.100 | 0.0 | 8.570058 | 34.928405 | 34.928405 | -2.71e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 40.232036 | 0.100 | 0.0 | 10.731008 | 34.739991 | 34.739991 | 2.65e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 46.359693 | 0.100 | 0.0 | 7.808323 | 39.126903 | 39.126903 | 5.30e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 31.076991 | 0.010 | 0.0 | 23.444445 | 27.862900 | 27.862900 | -5.74e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 40.232036 | 0.010 | 0.0 | 28.742722 | 27.860873 | 27.860873 | -5.37e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 46.359693 | 0.010 | 0.0 | 21.248620 | 32.343669 | 32.343669 | 2.66e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 31.076991 | 0.001 | 0.0 | 45.198656 | 23.548935 | 23.548935 | 2.97e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 40.232036 | 0.001 | 0.0 | 54.255612 | 23.754016 | 23.754016 | 2.84e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 46.359693 | 0.001 | 0.0 | 40.681330 | 28.333811 | 28.333811 | -1.58e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 22.278335 | 1.000 | 0.0 | 1.706901 | 38.650730 | 38.650730 | 2.63e-10 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 52.678985 | 1.000 | 0.0 | 1.437313 | 46.239921 | 46.239921 | -4.91e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 22.278335 | 0.100 | 0.0 | 8.271647 | 27.963454 | 27.963454 | 4.38e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 52.678985 | 0.100 | 0.0 | 6.297247 | 36.834658 | 36.834658 | 3.48e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 22.278335 | 0.010 | 0.0 | 18.944104 | 22.644928 | 22.644928 | -3.59e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 52.678985 | 0.010 | 0.0 | 16.429807 | 30.868800 | 30.868800 | -2.72e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 22.278335 | 0.001 | 0.0 | 29.911713 | 20.292923 | 20.292923 | 4.44e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 52.678985 | 0.001 | 0.0 | 29.930948 | 27.632370 | 27.632370 | -3.24e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 22.278335 | 1.000 | 0.0 | 6.813368 | 33.646885 | 33.646885 | -4.56e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 52.678985 | 1.000 | 0.0 | 6.654856 | 40.086834 | 40.086834 | 3.63e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 22.278335 | 0.100 | 0.0 | 29.318968 | 22.854139 | 22.854139 | 4.86e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 52.678985 | 0.100 | 0.0 | 25.562955 | 30.675965 | 30.675965 | 3.41e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 22.278335 | 0.010 | 0.0 | 59.625764 | 17.882554 | 17.882554 | -1.53e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 52.678985 | 0.010 | 0.0 | 58.474383 | 25.042467 | 25.042467 | -2.07e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 22.278335 | 0.001 | 0.0 | 83.599639 | 16.169229 | 16.169229 | -7.31e-10 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 52.678985 | 0.001 | 0.0 | 93.395625 | 22.427035 | 22.427035 | 4.53e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 48.241171 | 1.000 | 90.0 | 1.274464 | 45.794052 | 45.794052 | -2.26e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 85.804596 | 1.000 | 90.0 | 2.001027 | 74.875777 | 74.875777 | -7.07e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 20.143358 | 1.000 | 90.0 | 1.012354 | 42.526404 | 42.526404 | 1.79e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 48.241171 | 0.100 | 90.0 | 5.486347 | 36.508437 | 36.508437 | 4.77e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 85.804596 | 0.100 | 90.0 | 11.001455 | 65.273303 | 65.273304 | -1.24e-08 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 20.143358 | 0.100 | 90.0 | 5.881071 | 30.564398 | 30.564398 | 3.68e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 48.241171 | 0.010 | 90.0 | 14.872137 | 30.189886 | 30.189886 | 3.08e-10 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 85.804596 | 0.010 | 90.0 | 21.610579 | 63.370502 | 63.370502 | -1.42e-08 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 20.143358 | 0.010 | 90.0 | 12.289760 | 26.192025 | 26.192025 | -1.47e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 48.241171 | 0.001 | 90.0 | 28.236031 | 26.537261 | 26.537261 | -2.07e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 85.804596 | 0.001 | 90.0 | 28.819504 | 64.717261 | 64.717261 | -8.39e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 14.25 | 20.143358 | 0.001 | 90.0 | 17.441993 | 25.008801 | 25.008801 | -2.79e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 48.241171 | 1.000 | 90.0 | 5.887822 | 39.721343 | 39.721343 | 4.54e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 85.804596 | 1.000 | 90.0 | 10.213148 | 67.739322 | 67.739322 | -4.96e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 20.143358 | 1.000 | 90.0 | 3.701584 | 38.523477 | 38.523477 | 3.83e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 48.241171 | 0.100 | 90.0 | 22.226229 | 30.442770 | 30.442770 | -3.46e-10 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 85.804596 | 0.100 | 90.0 | 48.819968 | 58.023471 | 58.023471 | -6.32e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 20.143358 | 0.100 | 90.0 | 19.239104 | 26.349498 | 26.349498 | 4.11e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 48.241171 | 0.010 | 90.0 | 52.833721 | 24.437965 | 24.437965 | -1.17e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 85.804596 | 0.010 | 90.0 | 83.378562 | 56.633773 | 56.633773 | -1.08e-08 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 20.143358 | 0.010 | 90.0 | 35.970377 | 22.356294 | 22.356294 | -2.06e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 48.241171 | 0.001 | 90.0 | 87.962337 | 21.383360 | 21.383360 | 5.13e-09 | 0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 85.804596 | 0.001 | 90.0 | 96.675211 | 58.824705 | 58.824705 | -6.98e-09 | -0.000 |
models.itu618.rain_cross_polarization_discrimination | 29.00 | 20.143358 | 0.001 | 90.0 | 45.674191 | 21.851236 | 21.851236 | 3.93e-09 | 0.000 |
Function rain_attenuation¶
The table below contains the results of testing function rain_attenuation
.
The test cases were extracted from spreadsheet ITURP618-13_A_rain.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 51.5 # (°N)
lon = -0.14 # (°E)
hs = 0.031382984 # (km)
el = 31.07699124 # (°)
f = 14.25 # (GHz)
tau = 0.0 # (°)
p = 1.0 # (%)
R001 = 26.48052 # (mm/h)
# Make call to test-function rain_attenuation
itur_val = itur.models.itu618.rain_attenuation(lat=lat, lon=lon, hs=hs, el=el, f=f, tau=tau, p=p, R001=R001)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.495317069 # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | hs (km) | el (°) | f (GHz) | tau (°) | p (%) | R001 (mm/h) | ITU Validation (dB) | ITU-Rpy Result (dB) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|---|---|---|---|
models.itu618.rain_attenuation | 51.500 | -0.14 | 0.031383 | 31.076991 | 14.25 | 0.0 | 1.000 | 26.480520 | 0.495317 | 0.495317 | 2.17e-11 | 0.000 |
models.itu618.rain_attenuation | 41.900 | 12.49 | 0.046123 | 40.232036 | 14.25 | 0.0 | 1.000 | 33.936232 | 0.623263 | 0.623263 | 2.06e-10 | 0.000 |
models.itu618.rain_attenuation | 33.940 | 18.43 | 0.000000 | 46.359693 | 14.25 | 0.0 | 1.000 | 27.135868 | 0.421017 | 0.421017 | 1.40e-10 | 0.000 |
models.itu618.rain_attenuation | 51.500 | -0.14 | 0.031383 | 31.076991 | 14.25 | 0.0 | 0.100 | 26.480520 | 2.185847 | 2.185847 | 1.28e-10 | 0.000 |
models.itu618.rain_attenuation | 41.900 | 12.49 | 0.046123 | 40.232036 | 14.25 | 0.0 | 0.100 | 33.936232 | 2.696765 | 2.696765 | 4.37e-10 | 0.000 |
models.itu618.rain_attenuation | 33.940 | 18.43 | 0.000000 | 46.359693 | 14.25 | 0.0 | 0.100 | 27.135868 | 1.913388 | 1.913388 | 5.49e-11 | 0.000 |
models.itu618.rain_attenuation | 51.500 | -0.14 | 0.031383 | 31.076991 | 14.25 | 0.0 | 0.010 | 26.480520 | 6.798072 | 6.798072 | 9.61e-10 | 0.000 |
models.itu618.rain_attenuation | 41.900 | 12.49 | 0.046123 | 40.232036 | 14.25 | 0.0 | 0.010 | 33.936232 | 8.223265 | 8.223265 | 7.29e-10 | 0.000 |
models.itu618.rain_attenuation | 33.940 | 18.43 | 0.000000 | 46.359693 | 14.25 | 0.0 | 0.010 | 27.135868 | 5.941806 | 5.941806 | -2.64e-10 | -0.000 |
models.itu618.rain_attenuation | 51.500 | -0.14 | 0.031383 | 31.076991 | 14.25 | 0.0 | 0.001 | 26.480520 | 14.899822 | 14.899822 | 1.91e-09 | 0.000 |
models.itu618.rain_attenuation | 41.900 | 12.49 | 0.046123 | 40.232036 | 14.25 | 0.0 | 0.001 | 33.936232 | 17.671558 | 17.671558 | -1.92e-09 | -0.000 |
models.itu618.rain_attenuation | 33.940 | 18.43 | 0.000000 | 46.359693 | 14.25 | 0.0 | 0.001 | 27.135868 | 12.981517 | 12.981517 | 2.47e-09 | 0.000 |
models.itu618.rain_attenuation | 51.500 | -0.14 | 0.031383 | 31.076991 | 29.00 | 0.0 | 1.000 | 26.480520 | 2.207786 | 2.207786 | 3.84e-11 | 0.000 |
models.itu618.rain_attenuation | 41.900 | 12.49 | 0.046123 | 40.232036 | 29.00 | 0.0 | 1.000 | 33.936232 | 2.823466 | 2.823466 | 2.25e-10 | 0.000 |
models.itu618.rain_attenuation | 33.940 | 18.43 | 0.000000 | 46.359693 | 29.00 | 0.0 | 1.000 | 27.135868 | 1.960636 | 1.960636 | 1.28e-11 | 0.000 |
models.itu618.rain_attenuation | 51.500 | -0.14 | 0.031383 | 31.076991 | 29.00 | 0.0 | 0.100 | 26.480520 | 8.570058 | 8.570058 | 5.85e-10 | 0.000 |
models.itu618.rain_attenuation | 41.900 | 12.49 | 0.046123 | 40.232036 | 29.00 | 0.0 | 0.100 | 33.936232 | 10.731008 | 10.731008 | -1.49e-09 | -0.000 |
models.itu618.rain_attenuation | 33.940 | 18.43 | 0.000000 | 46.359693 | 29.00 | 0.0 | 0.100 | 27.135868 | 7.808323 | 7.808323 | -2.67e-10 | -0.000 |
models.itu618.rain_attenuation | 51.500 | -0.14 | 0.031383 | 31.076991 | 29.00 | 0.0 | 0.010 | 26.480520 | 23.444445 | 23.444445 | -1.91e-09 | -0.000 |
models.itu618.rain_attenuation | 41.900 | 12.49 | 0.046123 | 40.232036 | 29.00 | 0.0 | 0.010 | 33.936232 | 28.742722 | 28.742722 | -1.98e-09 | -0.000 |
models.itu618.rain_attenuation | 33.940 | 18.43 | 0.000000 | 46.359693 | 29.00 | 0.0 | 0.010 | 27.135868 | 21.248620 | 21.248620 | 6.22e-10 | 0.000 |
models.itu618.rain_attenuation | 51.500 | -0.14 | 0.031383 | 31.076991 | 29.00 | 0.0 | 0.001 | 26.480520 | 45.198656 | 45.198656 | 3.56e-09 | 0.000 |
models.itu618.rain_attenuation | 41.900 | 12.49 | 0.046123 | 40.232036 | 29.00 | 0.0 | 0.001 | 33.936232 | 54.255612 | 54.255612 | -3.29e-09 | -0.000 |
models.itu618.rain_attenuation | 33.940 | 18.43 | 0.000000 | 46.359693 | 29.00 | 0.0 | 0.001 | 27.135868 | 40.681330 | 40.681330 | 4.43e-09 | 0.000 |
models.itu618.rain_attenuation | 22.900 | -43.23 | 0.000000 | 22.278335 | 14.25 | 0.0 | 1.000 | 50.639304 | 1.706901 | 1.706901 | -4.20e-10 | -0.000 |
models.itu618.rain_attenuation | 25.780 | -80.22 | 0.008617 | 52.678985 | 14.25 | 0.0 | 1.000 | 78.299499 | 1.437313 | 1.437313 | 1.97e-10 | 0.000 |
models.itu618.rain_attenuation | 22.900 | -43.23 | 0.000000 | 22.278335 | 14.25 | 0.0 | 0.100 | 50.639304 | 8.271647 | 8.271647 | -2.71e-09 | -0.000 |
models.itu618.rain_attenuation | 25.780 | -80.22 | 0.008617 | 52.678985 | 14.25 | 0.0 | 0.100 | 78.299499 | 6.297247 | 6.297247 | 2.20e-10 | 0.000 |
models.itu618.rain_attenuation | 22.900 | -43.23 | 0.000000 | 22.278335 | 14.25 | 0.0 | 0.010 | 50.639304 | 18.944104 | 18.944104 | 4.59e-10 | 0.000 |
models.itu618.rain_attenuation | 25.780 | -80.22 | 0.008617 | 52.678985 | 14.25 | 0.0 | 0.010 | 78.299499 | 16.429807 | 16.429807 | 1.59e-10 | 0.000 |
models.itu618.rain_attenuation | 22.900 | -43.23 | 0.000000 | 22.278335 | 14.25 | 0.0 | 0.001 | 50.639304 | 29.911713 | 29.911713 | 5.32e-09 | 0.000 |
models.itu618.rain_attenuation | 25.780 | -80.22 | 0.008617 | 52.678985 | 14.25 | 0.0 | 0.001 | 78.299499 | 29.930948 | 29.930948 | 3.99e-09 | 0.000 |
models.itu618.rain_attenuation | 22.900 | -43.23 | 0.000000 | 22.278335 | 29.00 | 0.0 | 1.000 | 50.639304 | 6.813368 | 6.813368 | -3.45e-10 | -0.000 |
models.itu618.rain_attenuation | 25.780 | -80.22 | 0.008617 | 52.678985 | 29.00 | 0.0 | 1.000 | 78.299499 | 6.654856 | 6.654856 | 1.76e-10 | 0.000 |
models.itu618.rain_attenuation | 22.900 | -43.23 | 0.000000 | 22.278335 | 29.00 | 0.0 | 0.100 | 50.639304 | 29.318968 | 29.318968 | -7.76e-09 | -0.000 |
models.itu618.rain_attenuation | 25.780 | -80.22 | 0.008617 | 52.678985 | 29.00 | 0.0 | 0.100 | 78.299499 | 25.562955 | 25.562955 | -9.96e-11 | -0.000 |
models.itu618.rain_attenuation | 22.900 | -43.23 | 0.000000 | 22.278335 | 29.00 | 0.0 | 0.010 | 50.639304 | 59.625764 | 59.625764 | -3.59e-09 | -0.000 |
models.itu618.rain_attenuation | 25.780 | -80.22 | 0.008617 | 52.678985 | 29.00 | 0.0 | 0.010 | 78.299499 | 58.474383 | 58.474383 | -1.82e-09 | -0.000 |
models.itu618.rain_attenuation | 22.900 | -43.23 | 0.000000 | 22.278335 | 29.00 | 0.0 | 0.001 | 50.639304 | 83.599639 | 83.599639 | 6.90e-09 | 0.000 |
models.itu618.rain_attenuation | 25.780 | -80.22 | 0.008617 | 52.678985 | 29.00 | 0.0 | 0.001 | 78.299499 | 93.395625 | 93.395625 | -8.98e-10 | -0.000 |
models.itu618.rain_attenuation | 28.717 | 77.30 | 0.209384 | 48.241171 | 14.25 | 90.0 | 1.000 | 63.618888 | 1.274464 | 1.274464 | -6.19e-11 | -0.000 |
models.itu618.rain_attenuation | 3.133 | 101.70 | 0.051251 | 85.804596 | 14.25 | 90.0 | 1.000 | 99.151172 | 2.001027 | 2.001027 | 3.34e-10 | 0.000 |
models.itu618.rain_attenuation | 9.050 | 38.70 | 2.539862 | 20.143358 | 14.25 | 90.0 | 1.000 | 42.910072 | 1.012354 | 1.012354 | 6.18e-10 | 0.000 |
models.itu618.rain_attenuation | 28.717 | 77.30 | 0.209384 | 48.241171 | 14.25 | 90.0 | 0.100 | 63.618888 | 5.486347 | 5.486347 | 4.37e-10 | 0.000 |
models.itu618.rain_attenuation | 3.133 | 101.70 | 0.051251 | 85.804596 | 14.25 | 90.0 | 0.100 | 99.151172 | 11.001455 | 11.001455 | 3.78e-09 | 0.000 |
models.itu618.rain_attenuation | 9.050 | 38.70 | 2.539862 | 20.143358 | 14.25 | 90.0 | 0.100 | 42.910072 | 5.881071 | 5.881071 | 2.82e-09 | 0.000 |
models.itu618.rain_attenuation | 28.717 | 77.30 | 0.209384 | 48.241171 | 14.25 | 90.0 | 0.010 | 63.618888 | 14.872137 | 14.872137 | 4.25e-09 | 0.000 |
models.itu618.rain_attenuation | 3.133 | 101.70 | 0.051251 | 85.804596 | 14.25 | 90.0 | 0.010 | 99.151172 | 21.610579 | 21.610579 | -2.07e-09 | -0.000 |
models.itu618.rain_attenuation | 9.050 | 38.70 | 2.539862 | 20.143358 | 14.25 | 90.0 | 0.010 | 42.910072 | 12.289760 | 12.289760 | 4.58e-09 | 0.000 |
models.itu618.rain_attenuation | 28.717 | 77.30 | 0.209384 | 48.241171 | 14.25 | 90.0 | 0.001 | 63.618888 | 28.236031 | 28.236031 | -3.08e-09 | -0.000 |
models.itu618.rain_attenuation | 3.133 | 101.70 | 0.051251 | 85.804596 | 14.25 | 90.0 | 0.001 | 99.151172 | 28.819504 | 28.819504 | 3.40e-09 | 0.000 |
models.itu618.rain_attenuation | 9.050 | 38.70 | 2.539862 | 20.143358 | 14.25 | 90.0 | 0.001 | 42.910072 | 17.441993 | 17.441993 | -2.61e-09 | -0.000 |
models.itu618.rain_attenuation | 28.717 | 77.30 | 0.209384 | 48.241171 | 29.00 | 90.0 | 1.000 | 63.618888 | 5.887822 | 5.887822 | 1.95e-10 | 0.000 |
models.itu618.rain_attenuation | 3.133 | 101.70 | 0.051251 | 85.804596 | 29.00 | 90.0 | 1.000 | 99.151172 | 10.213148 | 10.213148 | -3.36e-09 | -0.000 |
models.itu618.rain_attenuation | 9.050 | 38.70 | 2.539862 | 20.143358 | 29.00 | 90.0 | 1.000 | 42.910072 | 3.701584 | 3.701584 | 1.41e-09 | 0.000 |
models.itu618.rain_attenuation | 28.717 | 77.30 | 0.209384 | 48.241171 | 29.00 | 90.0 | 0.100 | 63.618888 | 22.226229 | 22.226229 | 7.10e-10 | 0.000 |
models.itu618.rain_attenuation | 3.133 | 101.70 | 0.051251 | 85.804596 | 29.00 | 90.0 | 0.100 | 99.151172 | 48.819968 | 48.819968 | 1.86e-09 | 0.000 |
models.itu618.rain_attenuation | 9.050 | 38.70 | 2.539862 | 20.143358 | 29.00 | 90.0 | 0.100 | 42.910072 | 19.239104 | 19.239104 | 7.05e-09 | 0.000 |
models.itu618.rain_attenuation | 28.717 | 77.30 | 0.209384 | 48.241171 | 29.00 | 90.0 | 0.010 | 63.618888 | 52.833721 | 52.833721 | 4.50e-09 | 0.000 |
models.itu618.rain_attenuation | 3.133 | 101.70 | 0.051251 | 85.804596 | 29.00 | 90.0 | 0.010 | 99.151172 | 83.378562 | 83.378562 | 2.28e-09 | 0.000 |
models.itu618.rain_attenuation | 9.050 | 38.70 | 2.539862 | 20.143358 | 29.00 | 90.0 | 0.010 | 42.910072 | 35.970377 | 35.970377 | 6.23e-09 | 0.000 |
models.itu618.rain_attenuation | 28.717 | 77.30 | 0.209384 | 48.241171 | 29.00 | 90.0 | 0.001 | 63.618888 | 87.962337 | 87.962337 | 2.93e-09 | 0.000 |
models.itu618.rain_attenuation | 3.133 | 101.70 | 0.051251 | 85.804596 | 29.00 | 90.0 | 0.001 | 99.151172 | 96.675211 | 96.675211 | 4.49e-09 | 0.000 |
models.itu618.rain_attenuation | 9.050 | 38.70 | 2.539862 | 20.143358 | 29.00 | 90.0 | 0.001 | 42.910072 | 45.674191 | 45.674191 | 8.68e-09 | 0.000 |
Function rain_attenuation_probability¶
The table below contains the results of testing function rain_attenuation_probability
.
The test cases were extracted from spreadsheet ITURP618-13_A_rain.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 51.5 # (°N)
lon = -0.14 # (°E)
hs = 0.031382984 # (km)
el = 31.07699124 # (°)
Ls = 4.690817392 # (km)
P0 = 0.053615096 # (0-1)
# Make call to test-function rain_attenuation_probability
itur_val = itur.models.itu618.rain_attenuation_probability(lat=lat, lon=lon, hs=hs, el=el, Ls=Ls, P0=P0)
# Compute error with respect to value in ITU example file
ITU_example_val = 7.341941569 # (%)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | hs (km) | el (°) | Ls (km) | P0 (0-1) | ITU Validation (%) | ITU-Rpy Result (%) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|---|---|
models.itu618.rain_attenuation_probability | 51.500 | -0.14 | 0.031383 | 31.076991 | 4.690817 | 0.053615 | 7.341942 | 7.341942 | 1.13e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 41.900 | 12.49 | 0.046123 | 40.232036 | 4.646914 | 0.052697 | 7.093501 | 7.093501 | -3.29e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 33.940 | 18.43 | 0.000000 | 46.359693 | 3.542007 | 0.012757 | 1.744680 | 1.744680 | 2.20e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 51.500 | -0.14 | 0.031383 | 31.076991 | 4.690817 | 0.053615 | 7.341942 | 7.341942 | 1.13e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 41.900 | 12.49 | 0.046123 | 40.232036 | 4.646914 | 0.052697 | 7.093501 | 7.093501 | -3.29e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 33.940 | 18.43 | 0.000000 | 46.359693 | 3.542007 | 0.012757 | 1.744680 | 1.744680 | 2.20e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 51.500 | -0.14 | 0.031383 | 31.076991 | 4.690817 | 0.053615 | 7.341942 | 7.341942 | 1.13e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 41.900 | 12.49 | 0.046123 | 40.232036 | 4.646914 | 0.052697 | 7.093501 | 7.093501 | -3.29e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 33.940 | 18.43 | 0.000000 | 46.359693 | 3.542007 | 0.012757 | 1.744680 | 1.744680 | 2.20e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 51.500 | -0.14 | 0.031383 | 31.076991 | 4.690817 | 0.053615 | 7.341942 | 7.341942 | 1.13e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 41.900 | 12.49 | 0.046123 | 40.232036 | 4.646914 | 0.052697 | 7.093501 | 7.093501 | -3.29e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 33.940 | 18.43 | 0.000000 | 46.359693 | 3.542007 | 0.012757 | 1.744680 | 1.744680 | 2.20e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 51.500 | -0.14 | 0.031383 | 31.076991 | 4.690817 | 0.053615 | 7.341942 | 7.341942 | 1.13e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 41.900 | 12.49 | 0.046123 | 40.232036 | 4.646914 | 0.052697 | 7.093501 | 7.093501 | -3.29e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 33.940 | 18.43 | 0.000000 | 46.359693 | 3.542007 | 0.012757 | 1.744680 | 1.744680 | 2.20e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 51.500 | -0.14 | 0.031383 | 31.076991 | 4.690817 | 0.053615 | 7.341942 | 7.341942 | 1.13e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 41.900 | 12.49 | 0.046123 | 40.232036 | 4.646914 | 0.052697 | 7.093501 | 7.093501 | -3.29e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 33.940 | 18.43 | 0.000000 | 46.359693 | 3.542007 | 0.012757 | 1.744680 | 1.744680 | 2.20e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 51.500 | -0.14 | 0.031383 | 31.076991 | 4.690817 | 0.053615 | 7.341942 | 7.341942 | 1.13e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 41.900 | 12.49 | 0.046123 | 40.232036 | 4.646914 | 0.052697 | 7.093501 | 7.093501 | -3.29e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 33.940 | 18.43 | 0.000000 | 46.359693 | 3.542007 | 0.012757 | 1.744680 | 1.744680 | 2.20e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 51.500 | -0.14 | 0.031383 | 31.076991 | 4.690817 | 0.053615 | 7.341942 | 7.341942 | 1.13e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 41.900 | 12.49 | 0.046123 | 40.232036 | 4.646914 | 0.052697 | 7.093501 | 7.093501 | -3.29e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 33.940 | 18.43 | 0.000000 | 46.359693 | 3.542007 | 0.012757 | 1.744680 | 1.744680 | 2.20e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 22.900 | -43.23 | 0.000000 | 22.278335 | 10.969955 | 0.014177 | 2.582901 | 2.582901 | 4.63e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 25.780 | -80.22 | 0.008617 | 52.678985 | 5.735099 | 0.029079 | 4.038043 | 4.038043 | 5.94e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 22.900 | -43.23 | 0.000000 | 22.278335 | 10.969955 | 0.014177 | 2.582901 | 2.582901 | 4.63e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 25.780 | -80.22 | 0.008617 | 52.678985 | 5.735099 | 0.029079 | 4.038043 | 4.038043 | 5.94e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 22.900 | -43.23 | 0.000000 | 22.278335 | 10.969955 | 0.014177 | 2.582901 | 2.582901 | 4.63e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 25.780 | -80.22 | 0.008617 | 52.678985 | 5.735099 | 0.029079 | 4.038043 | 4.038043 | 5.94e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 22.900 | -43.23 | 0.000000 | 22.278335 | 10.969955 | 0.014177 | 2.582901 | 2.582901 | 4.63e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 25.780 | -80.22 | 0.008617 | 52.678985 | 5.735099 | 0.029079 | 4.038043 | 4.038043 | 5.94e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 22.900 | -43.23 | 0.000000 | 22.278335 | 10.969955 | 0.014177 | 2.582901 | 2.582901 | 4.63e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 25.780 | -80.22 | 0.008617 | 52.678985 | 5.735099 | 0.029079 | 4.038043 | 4.038043 | 5.94e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 22.900 | -43.23 | 0.000000 | 22.278335 | 10.969955 | 0.014177 | 2.582901 | 2.582901 | 4.63e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 25.780 | -80.22 | 0.008617 | 52.678985 | 5.735099 | 0.029079 | 4.038043 | 4.038043 | 5.94e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 22.900 | -43.23 | 0.000000 | 22.278335 | 10.969955 | 0.014177 | 2.582901 | 2.582901 | 4.63e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 25.780 | -80.22 | 0.008617 | 52.678985 | 5.735099 | 0.029079 | 4.038043 | 4.038043 | 5.94e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 22.900 | -43.23 | 0.000000 | 22.278335 | 10.969955 | 0.014177 | 2.582901 | 2.582901 | 4.63e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 25.780 | -80.22 | 0.008617 | 52.678985 | 5.735099 | 0.029079 | 4.038043 | 4.038043 | 5.94e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 28.717 | 77.30 | 0.209384 | 48.241171 | 6.768266 | 0.010709 | 1.644749 | 1.644749 | 4.24e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 3.133 | 101.70 | 0.051251 | 85.804596 | 4.919907 | 0.045365 | 5.010168 | 5.010183 | -1.46e-05 | -0.000 |
models.itu618.rain_attenuation_probability | 9.050 | 38.70 | 2.539862 | 20.143358 | 6.516372 | 0.047125 | 6.984766 | 6.984766 | -5.45e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 28.717 | 77.30 | 0.209384 | 48.241171 | 6.768266 | 0.010709 | 1.644749 | 1.644749 | 4.24e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 3.133 | 101.70 | 0.051251 | 85.804596 | 4.919907 | 0.045365 | 5.010168 | 5.010183 | -1.46e-05 | -0.000 |
models.itu618.rain_attenuation_probability | 9.050 | 38.70 | 2.539862 | 20.143358 | 6.516372 | 0.047125 | 6.984766 | 6.984766 | -5.45e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 28.717 | 77.30 | 0.209384 | 48.241171 | 6.768266 | 0.010709 | 1.644749 | 1.644749 | 4.24e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 3.133 | 101.70 | 0.051251 | 85.804596 | 4.919907 | 0.045365 | 5.010168 | 5.010183 | -1.46e-05 | -0.000 |
models.itu618.rain_attenuation_probability | 9.050 | 38.70 | 2.539862 | 20.143358 | 6.516372 | 0.047125 | 6.984766 | 6.984766 | -5.45e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 28.717 | 77.30 | 0.209384 | 48.241171 | 6.768266 | 0.010709 | 1.644749 | 1.644749 | 4.24e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 3.133 | 101.70 | 0.051251 | 85.804596 | 4.919907 | 0.045365 | 5.010168 | 5.010183 | -1.46e-05 | -0.000 |
models.itu618.rain_attenuation_probability | 9.050 | 38.70 | 2.539862 | 20.143358 | 6.516372 | 0.047125 | 6.984766 | 6.984766 | -5.45e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 28.717 | 77.30 | 0.209384 | 48.241171 | 6.768266 | 0.010709 | 1.644749 | 1.644749 | 4.24e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 3.133 | 101.70 | 0.051251 | 85.804596 | 4.919907 | 0.045365 | 5.010168 | 5.010183 | -1.46e-05 | -0.000 |
models.itu618.rain_attenuation_probability | 9.050 | 38.70 | 2.539862 | 20.143358 | 6.516372 | 0.047125 | 6.984766 | 6.984766 | -5.45e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 28.717 | 77.30 | 0.209384 | 48.241171 | 6.768266 | 0.010709 | 1.644749 | 1.644749 | 4.24e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 3.133 | 101.70 | 0.051251 | 85.804596 | 4.919907 | 0.045365 | 5.010168 | 5.010183 | -1.46e-05 | -0.000 |
models.itu618.rain_attenuation_probability | 9.050 | 38.70 | 2.539862 | 20.143358 | 6.516372 | 0.047125 | 6.984766 | 6.984766 | -5.45e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 28.717 | 77.30 | 0.209384 | 48.241171 | 6.768266 | 0.010709 | 1.644749 | 1.644749 | 4.24e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 3.133 | 101.70 | 0.051251 | 85.804596 | 4.919907 | 0.045365 | 5.010168 | 5.010183 | -1.46e-05 | -0.000 |
models.itu618.rain_attenuation_probability | 9.050 | 38.70 | 2.539862 | 20.143358 | 6.516372 | 0.047125 | 6.984766 | 6.984766 | -5.45e-08 | -0.000 |
models.itu618.rain_attenuation_probability | 28.717 | 77.30 | 0.209384 | 48.241171 | 6.768266 | 0.010709 | 1.644749 | 1.644749 | 4.24e-08 | 0.000 |
models.itu618.rain_attenuation_probability | 3.133 | 101.70 | 0.051251 | 85.804596 | 4.919907 | 0.045365 | 5.010168 | 5.010183 | -1.46e-05 | -0.000 |
models.itu618.rain_attenuation_probability | 9.050 | 38.70 | 2.539862 | 20.143358 | 6.516372 | 0.047125 | 6.984766 | 6.984766 | -5.45e-08 | -0.000 |
Function scintillation_attenuation¶
The table below contains the results of testing function scintillation_attenuation
.
The test cases were extracted from spreadsheet ITURP618-13_A_sci.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 51.5 # (°N)
lon = -0.14 # (°E)
f = 14.25 # (GHz)
el = 31.07699124 # (°)
p = 1.0 # (%)
D = 1.0 # (m)
eta = 0.65 # (0-1)
# Make call to test-function scintillation_attenuation
itur_val = itur.models.itu618.scintillation_attenuation(lat=lat, lon=lon, f=f, el=el, p=p, D=D, eta=eta)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.261931889 # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | f (GHz) | el (°) | p (%) | D (m) | eta (0-1) | ITU Validation (dB) | ITU-Rpy Result (dB) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|---|---|---|
models.itu618.scintillation_attenuation | 51.500 | -0.14 | 14.25 | 31.076991 | 1.000 | 1.0 | 0.65 | 0.261932 | 0.261932 | 6.92e-11 | 0.000 |
models.itu618.scintillation_attenuation | 41.900 | 12.49 | 14.25 | 40.232036 | 1.000 | 1.0 | 0.65 | 0.224052 | 0.224052 | 2.16e-10 | 0.000 |
models.itu618.scintillation_attenuation | 33.940 | 18.43 | 14.25 | 46.359693 | 1.000 | 1.0 | 0.65 | 0.232799 | 0.232799 | 2.71e-10 | 0.000 |
models.itu618.scintillation_attenuation | 51.500 | -0.14 | 14.25 | 31.076991 | 0.100 | 1.0 | 0.65 | 0.422845 | 0.422845 | -3.64e-10 | -0.000 |
models.itu618.scintillation_attenuation | 41.900 | 12.49 | 14.25 | 40.232036 | 0.100 | 1.0 | 0.65 | 0.361695 | 0.361695 | -4.47e-10 | -0.000 |
models.itu618.scintillation_attenuation | 33.940 | 18.43 | 14.25 | 46.359693 | 0.100 | 1.0 | 0.65 | 0.375816 | 0.375816 | -2.50e-10 | -0.000 |
models.itu618.scintillation_attenuation | 51.500 | -0.14 | 14.25 | 31.076991 | 0.010 | 1.0 | 0.65 | 0.628287 | 0.628287 | 8.48e-11 | 0.000 |
models.itu618.scintillation_attenuation | 41.900 | 12.49 | 14.25 | 40.232036 | 0.010 | 1.0 | 0.65 | 0.537427 | 0.537427 | -2.22e-10 | -0.000 |
models.itu618.scintillation_attenuation | 33.940 | 18.43 | 14.25 | 46.359693 | 0.010 | 1.0 | 0.65 | 0.558408 | 0.558408 | -1.24e-10 | -0.000 |
models.itu618.scintillation_attenuation | 51.500 | -0.14 | 14.25 | 31.076991 | 0.001 | 1.0 | 0.65 | 0.910213 | 0.910213 | -3.44e-11 | -0.000 |
models.itu618.scintillation_attenuation | 41.900 | 12.49 | 14.25 | 40.232036 | 0.001 | 1.0 | 0.65 | 0.778581 | 0.778581 | 1.25e-10 | 0.000 |
models.itu618.scintillation_attenuation | 33.940 | 18.43 | 14.25 | 46.359693 | 0.001 | 1.0 | 0.65 | 0.808978 | 0.808978 | 4.40e-10 | 0.000 |
models.itu618.scintillation_attenuation | 51.500 | -0.14 | 20.00 | 31.076991 | 1.000 | 1.0 | 0.65 | 0.316526 | 0.316526 | 3.95e-10 | 0.000 |
models.itu618.scintillation_attenuation | 41.900 | 12.49 | 20.00 | 40.232036 | 1.000 | 1.0 | 0.65 | 0.270358 | 0.270358 | -3.40e-10 | -0.000 |
models.itu618.scintillation_attenuation | 33.940 | 18.43 | 20.00 | 46.359693 | 1.000 | 1.0 | 0.65 | 0.280680 | 0.280680 | 2.25e-10 | 0.000 |
models.itu618.scintillation_attenuation | 51.500 | -0.14 | 20.00 | 31.076991 | 0.100 | 1.0 | 0.65 | 0.510979 | 0.510979 | 3.27e-10 | 0.000 |
models.itu618.scintillation_attenuation | 41.900 | 12.49 | 20.00 | 40.232036 | 0.100 | 1.0 | 0.65 | 0.436447 | 0.436447 | -2.18e-10 | -0.000 |
models.itu618.scintillation_attenuation | 33.940 | 18.43 | 20.00 | 46.359693 | 0.100 | 1.0 | 0.65 | 0.453111 | 0.453111 | 2.81e-10 | 0.000 |
models.itu618.scintillation_attenuation | 51.500 | -0.14 | 20.00 | 31.076991 | 0.010 | 1.0 | 0.65 | 0.759241 | 0.759241 | -1.35e-10 | -0.000 |
models.itu618.scintillation_attenuation | 41.900 | 12.49 | 20.00 | 40.232036 | 0.010 | 1.0 | 0.65 | 0.648498 | 0.648498 | -1.03e-10 | -0.000 |
models.itu618.scintillation_attenuation | 33.940 | 18.43 | 20.00 | 46.359693 | 0.010 | 1.0 | 0.65 | 0.673258 | 0.673258 | -3.64e-10 | -0.000 |
models.itu618.scintillation_attenuation | 51.500 | -0.14 | 20.00 | 31.076991 | 0.001 | 1.0 | 0.65 | 1.099929 | 1.099929 | -1.76e-10 | -0.000 |
models.itu618.scintillation_attenuation | 41.900 | 12.49 | 20.00 | 40.232036 | 0.001 | 1.0 | 0.65 | 0.939492 | 0.939492 | -3.07e-10 | -0.000 |
models.itu618.scintillation_attenuation | 33.940 | 18.43 | 20.00 | 46.359693 | 0.001 | 1.0 | 0.65 | 0.975363 | 0.975363 | -1.68e-10 | -0.000 |
models.itu618.scintillation_attenuation | 22.900 | -43.23 | 14.25 | 22.278335 | 1.000 | 1.0 | 0.65 | 0.620097 | 0.620097 | -2.05e-10 | -0.000 |
models.itu618.scintillation_attenuation | 25.780 | -80.22 | 14.25 | 52.678985 | 1.000 | 1.0 | 0.65 | 0.266475 | 0.266475 | 3.59e-10 | 0.000 |
models.itu618.scintillation_attenuation | 22.900 | -43.23 | 14.25 | 22.278335 | 0.100 | 1.0 | 0.65 | 1.001044 | 1.001044 | -1.80e-10 | -0.000 |
models.itu618.scintillation_attenuation | 25.780 | -80.22 | 14.25 | 52.678985 | 0.100 | 1.0 | 0.65 | 0.430179 | 0.430179 | 1.25e-10 | 0.000 |
models.itu618.scintillation_attenuation | 22.900 | -43.23 | 14.25 | 22.278335 | 0.010 | 1.0 | 0.65 | 1.487407 | 1.487407 | -3.10e-10 | -0.000 |
models.itu618.scintillation_attenuation | 25.780 | -80.22 | 14.25 | 52.678985 | 0.010 | 1.0 | 0.65 | 0.639185 | 0.639185 | 1.73e-10 | 0.000 |
models.itu618.scintillation_attenuation | 22.900 | -43.23 | 14.25 | 22.278335 | 0.001 | 1.0 | 0.65 | 2.154839 | 2.154839 | -8.12e-10 | -0.000 |
models.itu618.scintillation_attenuation | 25.780 | -80.22 | 14.25 | 52.678985 | 0.001 | 1.0 | 0.65 | 0.926000 | 0.926000 | -4.03e-10 | -0.000 |
models.itu618.scintillation_attenuation | 22.900 | -43.23 | 20.00 | 22.278335 | 1.000 | 1.0 | 0.65 | 0.750597 | 0.750597 | -2.69e-10 | -0.000 |
models.itu618.scintillation_attenuation | 25.780 | -80.22 | 20.00 | 52.678985 | 1.000 | 1.0 | 0.65 | 0.321045 | 0.321045 | -2.79e-11 | -0.000 |
models.itu618.scintillation_attenuation | 22.900 | -43.23 | 20.00 | 22.278335 | 0.100 | 1.0 | 0.65 | 1.211713 | 1.211713 | -9.65e-11 | -0.000 |
models.itu618.scintillation_attenuation | 25.780 | -80.22 | 20.00 | 52.678985 | 0.100 | 1.0 | 0.65 | 0.518273 | 0.518273 | 3.66e-11 | 0.000 |
models.itu618.scintillation_attenuation | 22.900 | -43.23 | 20.00 | 22.278335 | 0.010 | 1.0 | 0.65 | 1.800432 | 1.800432 | -5.00e-10 | -0.000 |
models.itu618.scintillation_attenuation | 25.780 | -80.22 | 20.00 | 52.678985 | 0.010 | 1.0 | 0.65 | 0.770079 | 0.770079 | -3.54e-10 | -0.000 |
models.itu618.scintillation_attenuation | 22.900 | -43.23 | 20.00 | 22.278335 | 0.001 | 1.0 | 0.65 | 2.608324 | 2.608324 | -2.10e-10 | -0.000 |
models.itu618.scintillation_attenuation | 25.780 | -80.22 | 20.00 | 52.678985 | 0.001 | 1.0 | 0.65 | 1.115631 | 1.115631 | 2.81e-11 | 0.000 |
models.itu618.scintillation_attenuation | 28.717 | 77.30 | 14.25 | 48.241171 | 1.000 | 1.0 | 0.65 | 0.215641 | 0.215641 | -4.71e-10 | -0.000 |
models.itu618.scintillation_attenuation | 3.133 | 101.70 | 14.25 | 85.804596 | 1.000 | 1.0 | 0.65 | 0.221671 | 0.221671 | -2.26e-10 | -0.000 |
models.itu618.scintillation_attenuation | 9.050 | 38.70 | 14.25 | 20.143358 | 1.000 | 1.0 | 0.65 | 0.485340 | 0.485340 | -2.90e-10 | -0.000 |
models.itu618.scintillation_attenuation | 28.717 | 77.30 | 14.25 | 48.241171 | 0.100 | 1.0 | 0.65 | 0.348117 | 0.348117 | 1.80e-10 | 0.000 |
models.itu618.scintillation_attenuation | 3.133 | 101.70 | 14.25 | 85.804596 | 0.100 | 1.0 | 0.65 | 0.357851 | 0.357851 | 2.18e-10 | 0.000 |
models.itu618.scintillation_attenuation | 9.050 | 38.70 | 14.25 | 20.143358 | 0.100 | 1.0 | 0.65 | 0.783500 | 0.783500 | -4.79e-11 | -0.000 |
models.itu618.scintillation_attenuation | 28.717 | 77.30 | 14.25 | 48.241171 | 0.010 | 1.0 | 0.65 | 0.517252 | 0.517252 | -4.49e-10 | -0.000 |
models.itu618.scintillation_attenuation | 3.133 | 101.70 | 14.25 | 85.804596 | 0.010 | 1.0 | 0.65 | 0.531716 | 0.531716 | 1.72e-10 | 0.000 |
models.itu618.scintillation_attenuation | 9.050 | 38.70 | 14.25 | 20.143358 | 0.010 | 1.0 | 0.65 | 1.164169 | 1.164169 | 3.55e-10 | 0.000 |
models.itu618.scintillation_attenuation | 28.717 | 77.30 | 14.25 | 48.241171 | 0.001 | 1.0 | 0.65 | 0.749353 | 0.749353 | -1.35e-10 | -0.000 |
models.itu618.scintillation_attenuation | 3.133 | 101.70 | 14.25 | 85.804596 | 0.001 | 1.0 | 0.65 | 0.770308 | 0.770308 | -1.59e-10 | -0.000 |
models.itu618.scintillation_attenuation | 9.050 | 38.70 | 14.25 | 20.143358 | 0.001 | 1.0 | 0.65 | 1.686556 | 1.686556 | 6.69e-10 | 0.000 |
models.itu618.scintillation_attenuation | 28.717 | 77.30 | 20.00 | 48.241171 | 1.000 | 1.0 | 0.65 | 0.259933 | 0.259933 | -3.98e-10 | -0.000 |
models.itu618.scintillation_attenuation | 3.133 | 101.70 | 20.00 | 85.804596 | 1.000 | 1.0 | 0.65 | 0.266539 | 0.266539 | -2.69e-10 | -0.000 |
models.itu618.scintillation_attenuation | 9.050 | 38.70 | 20.00 | 20.143358 | 1.000 | 1.0 | 0.65 | 0.587745 | 0.587745 | 2.58e-11 | 0.000 |
models.itu618.scintillation_attenuation | 28.717 | 77.30 | 20.00 | 48.241171 | 0.100 | 1.0 | 0.65 | 0.419618 | 0.419618 | -4.68e-10 | -0.000 |
models.itu618.scintillation_attenuation | 3.133 | 101.70 | 20.00 | 85.804596 | 0.100 | 1.0 | 0.65 | 0.430283 | 0.430283 | 1.27e-10 | 0.000 |
models.itu618.scintillation_attenuation | 9.050 | 38.70 | 20.00 | 20.143358 | 0.100 | 1.0 | 0.65 | 0.948816 | 0.948816 | 5.16e-10 | 0.000 |
models.itu618.scintillation_attenuation | 28.717 | 77.30 | 20.00 | 48.241171 | 0.010 | 1.0 | 0.65 | 0.623492 | 0.623492 | -4.51e-11 | -0.000 |
models.itu618.scintillation_attenuation | 3.133 | 101.70 | 20.00 | 85.804596 | 0.010 | 1.0 | 0.65 | 0.639339 | 0.639339 | 2.46e-10 | 0.000 |
models.itu618.scintillation_attenuation | 9.050 | 38.70 | 20.00 | 20.143358 | 0.010 | 1.0 | 0.65 | 1.409803 | 1.409803 | 1.90e-10 | 0.000 |
models.itu618.scintillation_attenuation | 28.717 | 77.30 | 20.00 | 48.241171 | 0.001 | 1.0 | 0.65 | 0.903266 | 0.903266 | -8.27e-11 | -0.000 |
models.itu618.scintillation_attenuation | 3.133 | 101.70 | 20.00 | 85.804596 | 0.001 | 1.0 | 0.65 | 0.926223 | 0.926223 | -4.60e-10 | -0.000 |
models.itu618.scintillation_attenuation | 9.050 | 38.70 | 20.00 | 20.143358 | 0.001 | 1.0 | 0.65 | 2.042413 | 2.042413 | 2.39e-10 | 0.000 |
Function atmospheric_attenuation_slant_path¶
The table below contains the results of testing function atmospheric_attenuation_slant_path
.
The test cases were extracted from spreadsheet ITURP618-13_A_total.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 51.5 # (°N)
lon = -0.14 # (°E)
f = 14.25 # (GHz)
el = 31.07699124 # (°)
p = 1.0 # (%)
D = 1.0 # (m)
eta = 0.65 # h
tau = 0.0 # (°)
hs = 0.031382984 # (km)
# Make call to test-function atmospheric_attenuation_slant_path
itur_val = itur.atmospheric_attenuation_slant_path(lat=lat, lon=lon, f=f, el=el, p=p, D=D, eta=eta, tau=tau, hs=hs)
# Compute error with respect to value in ITU example file
ITU_example_val = 1.212790721 # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | f (GHz) | el (°) | p (%) | D (m) | eta h | tau (°) | hs (km) | ITU Validation (dB) | ITU-Rpy Result (dB) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
atmospheric_attenuation_slant_path | 51.500 | -0.14 | 14.25 | 31.076991 | 1.000 | 1.0 | 0.65 | 0.0 | 0.031383 | 1.212791 | 1.212792 | -9.85e-07 | -0.000 |
atmospheric_attenuation_slant_path | 41.900 | 12.49 | 14.25 | 40.232036 | 1.000 | 1.0 | 0.65 | 0.0 | 0.046123 | 1.104002 | 1.103999 | 2.08e-06 | 0.000 |
atmospheric_attenuation_slant_path | 33.940 | 18.43 | 14.25 | 46.359693 | 1.000 | 1.0 | 0.65 | 0.0 | 0.000000 | 0.827813 | 0.827802 | 1.03e-05 | 0.001 |
atmospheric_attenuation_slant_path | 51.500 | -0.14 | 14.25 | 31.076991 | 0.100 | 1.0 | 0.65 | 0.0 | 0.031383 | 2.901523 | 2.901527 | -4.07e-06 | -0.000 |
atmospheric_attenuation_slant_path | 41.900 | 12.49 | 14.25 | 40.232036 | 0.100 | 1.0 | 0.65 | 0.0 | 0.046123 | 3.171655 | 3.171647 | 8.43e-06 | 0.000 |
atmospheric_attenuation_slant_path | 33.940 | 18.43 | 14.25 | 46.359693 | 0.100 | 1.0 | 0.65 | 0.0 | 0.000000 | 2.310531 | 2.310486 | 4.51e-05 | 0.002 |
atmospheric_attenuation_slant_path | 51.500 | -0.14 | 14.25 | 31.076991 | 0.010 | 1.0 | 0.65 | 0.0 | 0.031383 | 7.507265 | 7.507277 | -1.16e-05 | -0.000 |
atmospheric_attenuation_slant_path | 41.900 | 12.49 | 14.25 | 40.232036 | 0.010 | 1.0 | 0.65 | 0.0 | 0.046123 | 8.693154 | 8.693131 | 2.34e-05 | 0.000 |
atmospheric_attenuation_slant_path | 33.940 | 18.43 | 14.25 | 46.359693 | 0.010 | 1.0 | 0.65 | 0.0 | 0.000000 | 6.330976 | 6.330848 | 1.29e-04 | 0.002 |
atmospheric_attenuation_slant_path | 51.500 | -0.14 | 14.25 | 31.076991 | 0.001 | 1.0 | 0.65 | 0.0 | 0.031383 | 15.608798 | 15.608820 | -2.28e-05 | -0.000 |
atmospheric_attenuation_slant_path | 41.900 | 12.49 | 14.25 | 40.232036 | 0.001 | 1.0 | 0.65 | 0.0 | 0.046123 | 18.141360 | 18.141315 | 4.52e-05 | 0.000 |
atmospheric_attenuation_slant_path | 33.940 | 18.43 | 14.25 | 46.359693 | 0.001 | 1.0 | 0.65 | 0.0 | 0.000000 | 13.370111 | 13.369858 | 2.52e-04 | 0.002 |
atmospheric_attenuation_slant_path | 51.500 | -0.14 | 29.00 | 31.076991 | 1.000 | 1.0 | 0.65 | 0.0 | 0.031383 | 4.836825 | 4.836830 | -4.03e-06 | -0.000 |
atmospheric_attenuation_slant_path | 41.900 | 12.49 | 29.00 | 40.232036 | 1.000 | 1.0 | 0.65 | 0.0 | 0.046123 | 4.570303 | 4.570294 | 8.81e-06 | 0.000 |
atmospheric_attenuation_slant_path | 33.940 | 18.43 | 29.00 | 46.359693 | 1.000 | 1.0 | 0.65 | 0.0 | 0.000000 | 3.379708 | 3.379662 | 4.60e-05 | 0.001 |
atmospheric_attenuation_slant_path | 51.500 | -0.14 | 29.00 | 31.076991 | 0.100 | 1.0 | 0.65 | 0.0 | 0.031383 | 11.199171 | 11.199185 | -1.43e-05 | -0.000 |
atmospheric_attenuation_slant_path | 41.900 | 12.49 | 29.00 | 40.232036 | 0.100 | 1.0 | 0.65 | 0.0 | 0.046123 | 12.475796 | 12.475765 | 3.07e-05 | 0.000 |
atmospheric_attenuation_slant_path | 33.940 | 18.43 | 29.00 | 46.359693 | 0.100 | 1.0 | 0.65 | 0.0 | 0.000000 | 9.223537 | 9.223368 | 1.69e-04 | 0.002 |
atmospheric_attenuation_slant_path | 51.500 | -0.14 | 29.00 | 31.076991 | 0.010 | 1.0 | 0.65 | 0.0 | 0.031383 | 26.071751 | 26.071786 | -3.56e-05 | -0.000 |
atmospheric_attenuation_slant_path | 41.900 | 12.49 | 29.00 | 40.232036 | 0.010 | 1.0 | 0.65 | 0.0 | 0.046123 | 30.486002 | 30.485927 | 7.45e-05 | 0.000 |
atmospheric_attenuation_slant_path | 33.940 | 18.43 | 29.00 | 46.359693 | 0.010 | 1.0 | 0.65 | 0.0 | 0.000000 | 22.661253 | 22.660836 | 4.16e-04 | 0.002 |
atmospheric_attenuation_slant_path | 51.500 | -0.14 | 29.00 | 31.076991 | 0.001 | 1.0 | 0.65 | 0.0 | 0.031383 | 47.828120 | 47.828182 | -6.15e-05 | -0.000 |
atmospheric_attenuation_slant_path | 41.900 | 12.49 | 29.00 | 40.232036 | 0.001 | 1.0 | 0.65 | 0.0 | 0.046123 | 56.000323 | 56.000197 | 1.26e-04 | 0.000 |
atmospheric_attenuation_slant_path | 33.940 | 18.43 | 29.00 | 46.359693 | 0.001 | 1.0 | 0.65 | 0.0 | 0.000000 | 42.095681 | 42.094967 | 7.15e-04 | 0.002 |
atmospheric_attenuation_slant_path | 22.900 | -43.23 | 14.25 | 22.278335 | 1.000 | 1.0 | 0.65 | 0.0 | 0.000000 | 2.744155 | 2.744149 | 5.42e-06 | 0.000 |
atmospheric_attenuation_slant_path | 25.780 | -80.22 | 14.25 | 52.678985 | 1.000 | 1.0 | 0.65 | 0.0 | 0.008617 | 2.211657 | 2.211641 | 1.64e-05 | 0.001 |
atmospheric_attenuation_slant_path | 22.900 | -43.23 | 14.25 | 22.278335 | 0.100 | 1.0 | 0.65 | 0.0 | 0.000000 | 9.281657 | 9.281632 | 2.48e-05 | 0.000 |
atmospheric_attenuation_slant_path | 25.780 | -80.22 | 14.25 | 52.678985 | 0.100 | 1.0 | 0.65 | 0.0 | 0.008617 | 7.067191 | 7.067125 | 6.63e-05 | 0.001 |
atmospheric_attenuation_slant_path | 22.900 | -43.23 | 14.25 | 22.278335 | 0.010 | 1.0 | 0.65 | 0.0 | 0.000000 | 19.954158 | 19.954107 | 5.16e-05 | 0.000 |
atmospheric_attenuation_slant_path | 25.780 | -80.22 | 14.25 | 52.678985 | 0.010 | 1.0 | 0.65 | 0.0 | 0.008617 | 17.198261 | 17.198104 | 1.57e-04 | 0.001 |
atmospheric_attenuation_slant_path | 22.900 | -43.23 | 14.25 | 22.278335 | 0.001 | 1.0 | 0.65 | 0.0 | 0.000000 | 30.941244 | 30.941171 | 7.30e-05 | 0.000 |
atmospheric_attenuation_slant_path | 25.780 | -80.22 | 14.25 | 52.678985 | 0.001 | 1.0 | 0.65 | 0.0 | 0.008617 | 30.701438 | 30.701182 | 2.56e-04 | 0.001 |
atmospheric_attenuation_slant_path | 22.900 | -43.23 | 29.00 | 22.278335 | 1.000 | 1.0 | 0.65 | 0.0 | 0.000000 | 10.598519 | 10.598499 | 2.02e-05 | 0.000 |
atmospheric_attenuation_slant_path | 25.780 | -80.22 | 29.00 | 52.678985 | 1.000 | 1.0 | 0.65 | 0.0 | 0.008617 | 9.640183 | 9.640109 | 7.36e-05 | 0.001 |
atmospheric_attenuation_slant_path | 22.900 | -43.23 | 29.00 | 22.278335 | 0.100 | 1.0 | 0.65 | 0.0 | 0.000000 | 33.091860 | 33.091780 | 7.97e-05 | 0.000 |
atmospheric_attenuation_slant_path | 25.780 | -80.22 | 29.00 | 52.678985 | 0.100 | 1.0 | 0.65 | 0.0 | 0.008617 | 28.546737 | 28.546478 | 2.59e-04 | 0.001 |
atmospheric_attenuation_slant_path | 22.900 | -43.23 | 29.00 | 22.278335 | 0.010 | 1.0 | 0.65 | 0.0 | 0.000000 | 63.403111 | 63.402964 | 1.47e-04 | 0.000 |
atmospheric_attenuation_slant_path | 25.780 | -80.22 | 29.00 | 52.678985 | 0.010 | 1.0 | 0.65 | 0.0 | 0.008617 | 61.458236 | 61.457700 | 5.36e-04 | 0.001 |
atmospheric_attenuation_slant_path | 22.900 | -43.23 | 29.00 | 22.278335 | 0.001 | 1.0 | 0.65 | 0.0 | 0.000000 | 87.397350 | 87.397165 | 1.85e-04 | 0.000 |
atmospheric_attenuation_slant_path | 25.780 | -80.22 | 29.00 | 52.678985 | 0.001 | 1.0 | 0.65 | 0.0 | 0.008617 | 96.381911 | 96.381144 | 7.67e-04 | 0.001 |
atmospheric_attenuation_slant_path | 28.717 | 77.30 | 14.25 | 48.241171 | 1.000 | 1.0 | 0.65 | 90.0 | 0.209384 | 2.257937 | 2.257627 | 3.09e-04 | 0.014 |
atmospheric_attenuation_slant_path | 3.133 | 101.70 | 14.25 | 85.804596 | 1.000 | 1.0 | 0.65 | 90.0 | 0.051251 | 2.824233 | 2.824188 | 4.54e-05 | 0.002 |
atmospheric_attenuation_slant_path | 9.050 | 38.70 | 14.25 | 20.143358 | 1.000 | 1.0 | 0.65 | 90.0 | 2.539862 | 1.961326 | 1.961309 | 1.77e-05 | 0.001 |
atmospheric_attenuation_slant_path | 28.717 | 77.30 | 14.25 | 48.241171 | 0.100 | 1.0 | 0.65 | 90.0 | 0.209384 | 6.467817 | 6.466594 | 1.22e-03 | 0.019 |
atmospheric_attenuation_slant_path | 3.133 | 101.70 | 14.25 | 85.804596 | 0.100 | 1.0 | 0.65 | 90.0 | 0.051251 | 11.820801 | 11.820572 | 2.29e-04 | 0.002 |
atmospheric_attenuation_slant_path | 9.050 | 38.70 | 14.25 | 20.143358 | 0.100 | 1.0 | 0.65 | 90.0 | 2.539862 | 6.807726 | 6.807629 | 9.70e-05 | 0.001 |
atmospheric_attenuation_slant_path | 28.717 | 77.30 | 14.25 | 48.241171 | 0.010 | 1.0 | 0.65 | 90.0 | 0.209384 | 15.852418 | 15.849412 | 3.01e-03 | 0.019 |
atmospheric_attenuation_slant_path | 3.133 | 101.70 | 14.25 | 85.804596 | 0.010 | 1.0 | 0.65 | 90.0 | 0.051251 | 22.430758 | 22.430350 | 4.08e-04 | 0.002 |
atmospheric_attenuation_slant_path | 9.050 | 38.70 | 14.25 | 20.143358 | 0.010 | 1.0 | 0.65 | 90.0 | 2.539862 | 13.221879 | 13.221694 | 1.84e-04 | 0.001 |
atmospheric_attenuation_slant_path | 28.717 | 77.30 | 14.25 | 48.241171 | 0.001 | 1.0 | 0.65 | 90.0 | 0.209384 | 29.217451 | 29.212334 | 5.12e-03 | 0.018 |
atmospheric_attenuation_slant_path | 3.133 | 101.70 | 14.25 | 85.804596 | 0.001 | 1.0 | 0.65 | 90.0 | 0.051251 | 29.643393 | 29.642906 | 4.87e-04 | 0.002 |
atmospheric_attenuation_slant_path | 9.050 | 38.70 | 14.25 | 20.143358 | 0.001 | 1.0 | 0.65 | 90.0 | 2.539862 | 18.400290 | 18.400055 | 2.34e-04 | 0.001 |
atmospheric_attenuation_slant_path | 28.717 | 77.30 | 29.00 | 48.241171 | 1.000 | 1.0 | 0.65 | 90.0 | 0.209384 | 9.723246 | 9.721866 | 1.38e-03 | 0.014 |
atmospheric_attenuation_slant_path | 3.133 | 101.70 | 29.00 | 85.804596 | 1.000 | 1.0 | 0.65 | 90.0 | 0.051251 | 13.417997 | 13.417768 | 2.29e-04 | 0.002 |
atmospheric_attenuation_slant_path | 9.050 | 38.70 | 29.00 | 20.143358 | 1.000 | 1.0 | 0.65 | 90.0 | 2.539862 | 7.008331 | 7.008272 | 5.92e-05 | 0.001 |
atmospheric_attenuation_slant_path | 28.717 | 77.30 | 29.00 | 48.241171 | 0.100 | 1.0 | 0.65 | 90.0 | 0.209384 | 26.061086 | 26.056323 | 4.76e-03 | 0.018 |
atmospheric_attenuation_slant_path | 3.133 | 101.70 | 29.00 | 85.804596 | 0.100 | 1.0 | 0.65 | 90.0 | 0.051251 | 52.023250 | 52.022248 | 1.00e-03 | 0.002 |
atmospheric_attenuation_slant_path | 9.050 | 38.70 | 29.00 | 20.143358 | 0.100 | 1.0 | 0.65 | 90.0 | 2.539862 | 22.535474 | 22.535192 | 2.83e-04 | 0.001 |
atmospheric_attenuation_slant_path | 28.717 | 77.30 | 29.00 | 48.241171 | 0.010 | 1.0 | 0.65 | 90.0 | 0.209384 | 56.668601 | 56.658341 | 1.03e-02 | 0.018 |
atmospheric_attenuation_slant_path | 3.133 | 101.70 | 29.00 | 85.804596 | 0.010 | 1.0 | 0.65 | 90.0 | 0.051251 | 86.582645 | 86.581095 | 1.55e-03 | 0.002 |
atmospheric_attenuation_slant_path | 9.050 | 38.70 | 29.00 | 20.143358 | 0.010 | 1.0 | 0.65 | 90.0 | 2.539862 | 39.274555 | 39.274076 | 4.79e-04 | 0.001 |
atmospheric_attenuation_slant_path | 28.717 | 77.30 | 29.00 | 48.241171 | 0.001 | 1.0 | 0.65 | 90.0 | 0.209384 | 91.798780 | 91.783468 | 1.53e-02 | 0.017 |
atmospheric_attenuation_slant_path | 3.133 | 101.70 | 29.00 | 85.804596 | 0.001 | 1.0 | 0.65 | 90.0 | 0.051251 | 99.882180 | 99.880568 | 1.61e-03 | 0.002 |
atmospheric_attenuation_slant_path | 9.050 | 38.70 | 29.00 | 20.143358 | 0.001 | 1.0 | 0.65 | 90.0 | 2.539862 | 49.004791 | 49.004245 | 5.46e-04 | 0.001 |
Validation results ITU-R P.676-12¶
This page contains the validation examples for Recommendation ITU-R P.676-12: Attenuation by atmospheric gases and related effects.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function gaseous_attenuation_slant_path¶
The table below contains the results of testing function gaseous_attenuation_slant_path
.
The test cases were extracted from spreadsheet ITURP676-12_A_gas.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
f = 14.25 # (GHz)
el = 31.07699124 # (°)
rho = 13.79653679 # (g/m3)
P = 1009.485612 # (hPA)
T = 283.6108756 # (C)
h = 0.031382984 # (km)
V_t = 33.72946527 # (kg/m2)
# Make call to test-function gaseous_attenuation_slant_path
itur_val = itur.models.itu676.gaseous_attenuation_slant_path(f=f, el=el, rho=rho, P=P, T=T, h=h, V_t=V_t)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.226874038 # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | f (GHz) | el (°) | rho (g/m3) | P (hPA) | T (C) | h (km) | V_t (kg/m2) | ITU Validation (dB) | ITU-Rpy Result (dB) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|---|---|---|
models.itu676.gaseous_attenuation_slant_path | 14.25 | 31.076991 | 13.796537 | 1009.485612 | 283.610876 | 0.031383 | 33.729465 | 0.226874 | 0.226874 | 3.20e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 40.232036 | 18.262420 | 1007.721474 | 288.089737 | 0.046123 | 36.048109 | 0.189481 | 0.189481 | -1.29e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 46.359693 | 22.730002 | 1013.250000 | 293.369680 | 0.000000 | 37.955600 | 0.176011 | 0.176011 | -2.98e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 31.076991 | 14.412531 | 1009.485612 | 283.610876 | 0.031383 | 35.725554 | 0.236085 | 0.236085 | 3.32e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 40.232036 | 18.749209 | 1007.721474 | 288.089737 | 0.046123 | 37.513014 | 0.194969 | 0.194969 | -2.48e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 46.359693 | 23.199501 | 1013.250000 | 293.369680 | 0.000000 | 40.511906 | 0.184676 | 0.184676 | -3.89e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 31.076991 | 14.783593 | 1009.485612 | 283.610876 | 0.031383 | 37.295953 | 0.243411 | 0.243411 | 7.32e-11 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 40.232036 | 19.092542 | 1007.721474 | 288.089737 | 0.046123 | 38.329647 | 0.198062 | 0.198062 | 6.92e-11 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 46.359693 | 23.514645 | 1013.250000 | 293.369680 | 0.000000 | 42.210224 | 0.190521 | 0.190521 | -3.61e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 31.076991 | 15.041048 | 1009.485612 | 283.610876 | 0.031383 | 38.244078 | 0.247880 | 0.247880 | 2.88e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 40.232036 | 19.346819 | 1007.721474 | 288.089737 | 0.046123 | 39.051281 | 0.200805 | 0.200805 | 5.58e-11 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 46.359693 | 23.759345 | 1013.250000 | 293.369680 | 0.000000 | 43.410461 | 0.194697 | 0.194697 | -2.08e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 31.076991 | 13.796537 | 1009.485612 | 283.610876 | 0.031383 | 33.729465 | 0.837660 | 0.837660 | -1.39e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 40.232036 | 18.262420 | 1007.721474 | 288.089737 | 0.046123 | 36.048109 | 0.706966 | 0.706966 | 3.09e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 46.359693 | 22.730002 | 1013.250000 | 293.369680 | 0.000000 | 37.955600 | 0.665978 | 0.665978 | -5.62e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 31.076991 | 14.412531 | 1009.485612 | 283.610876 | 0.031383 | 35.725554 | 0.880473 | 0.880473 | 6.19e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 40.232036 | 18.749209 | 1007.721474 | 288.089737 | 0.046123 | 37.513014 | 0.732381 | 0.732381 | 2.27e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 46.359693 | 23.199501 | 1013.250000 | 293.369680 | 0.000000 | 40.511906 | 0.706485 | 0.706485 | -1.84e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 31.076991 | 14.783593 | 1009.485612 | 283.610876 | 0.031383 | 37.295953 | 0.914534 | 0.914534 | 5.43e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 40.232036 | 19.092542 | 1007.721474 | 288.089737 | 0.046123 | 38.329647 | 0.746677 | 0.746677 | 4.67e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 46.359693 | 23.514645 | 1013.250000 | 293.369680 | 0.000000 | 42.210224 | 0.733784 | 0.733784 | 1.27e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 31.076991 | 15.041048 | 1009.485612 | 283.610876 | 0.031383 | 38.244078 | 0.935286 | 0.935286 | -1.04e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 40.232036 | 19.346819 | 1007.721474 | 288.089737 | 0.046123 | 39.051281 | 0.759364 | 0.759364 | 5.10e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 46.359693 | 23.759345 | 1013.250000 | 293.369680 | 0.000000 | 43.410461 | 0.753268 | 0.753268 | 2.05e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 22.278335 | 20.739431 | 1013.250000 | 297.453541 | 0.000000 | 49.513184 | 0.411484 | 0.411484 | -4.83e-11 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 52.678985 | 22.466488 | 1012.215224 | 297.574654 | 0.008617 | 57.497546 | 0.223232 | 0.223232 | -1.07e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 22.278335 | 21.046143 | 1013.250000 | 297.453541 | 0.000000 | 52.007390 | 0.428947 | 0.428947 | -1.01e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 52.678985 | 22.792038 | 1012.215224 | 297.574654 | 0.008617 | 59.222332 | 0.229296 | 0.229296 | 3.46e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 22.278335 | 21.247533 | 1013.250000 | 297.453541 | 0.000000 | 53.485111 | 0.439437 | 0.439437 | -8.09e-11 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 52.678985 | 23.000809 | 1012.215224 | 297.574654 | 0.008617 | 60.314611 | 0.233171 | 0.233171 | 1.81e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 22.278335 | 21.369403 | 1013.250000 | 297.453541 | 0.000000 | 54.631809 | 0.447641 | 0.447641 | 3.39e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 52.678985 | 23.163948 | 1012.215224 | 297.574654 | 0.008617 | 61.161560 | 0.236195 | 0.236195 | -4.61e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 22.278335 | 20.739431 | 1013.250000 | 297.453541 | 0.000000 | 49.513184 | 1.627537 | 1.627537 | -3.62e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 52.678985 | 22.466488 | 1012.215224 | 297.574654 | 0.008617 | 57.497546 | 0.900283 | 0.900283 | -5.50e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 22.278335 | 21.046143 | 1013.250000 | 297.453541 | 0.000000 | 52.007390 | 1.708828 | 1.708828 | -3.79e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 52.678985 | 22.792038 | 1012.215224 | 297.574654 | 0.008617 | 59.222332 | 0.928337 | 0.928337 | 1.10e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 22.278335 | 21.247533 | 1013.250000 | 297.453541 | 0.000000 | 53.485111 | 1.757604 | 1.757604 | -6.95e-11 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 52.678985 | 23.000809 | 1012.215224 | 297.574654 | 0.008617 | 60.314611 | 0.946255 | 0.946255 | -2.25e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 22.278335 | 21.369403 | 1013.250000 | 297.453541 | 0.000000 | 54.631809 | 1.795751 | 1.795751 | -5.24e-11 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 52.678985 | 23.163948 | 1012.215224 | 297.574654 | 0.008617 | 61.161560 | 0.960229 | 0.960229 | 1.51e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 48.241171 | 24.710531 | 988.348774 | 298.058499 | 0.209384 | 70.591345 | 0.285722 | 0.285722 | -2.52e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 85.804596 | 23.474627 | 1007.108268 | 299.605408 | 0.051251 | 62.584697 | 0.191743 | 0.191743 | -4.92e-11 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 20.143358 | 11.723170 | 743.187216 | 290.210093 | 2.539862 | 25.925669 | 0.222224 | 0.222224 | -7.43e-11 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 48.241171 | 25.120009 | 988.348774 | 298.058499 | 0.209384 | 72.477248 | 0.293396 | 0.293396 | -3.05e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 85.804596 | 23.756613 | 1007.108268 | 299.605408 | 0.051251 | 63.593435 | 0.194664 | 0.194664 | -4.53e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 20.143358 | 12.085274 | 743.187216 | 290.210093 | 2.539862 | 26.641637 | 0.226881 | 0.226881 | 2.16e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 48.241171 | 25.398943 | 988.348774 | 298.058499 | 0.209384 | 73.574292 | 0.297904 | 0.297904 | -4.60e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 85.804596 | 23.952441 | 1007.108268 | 299.605408 | 0.051251 | 64.336356 | 0.196825 | 0.196825 | 3.20e-11 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 20.143358 | 12.348773 | 743.187216 | 290.210093 | 2.539862 | 27.087127 | 0.229798 | 0.229798 | -1.92e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 48.241171 | 25.599327 | 988.348774 | 298.058499 | 0.209384 | 74.502008 | 0.301735 | 0.301735 | -1.03e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 85.804596 | 24.105412 | 1007.108268 | 299.605408 | 0.051251 | 64.946376 | 0.198608 | 0.198608 | -4.24e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 14.25 | 20.143358 | 12.547214 | 743.187216 | 290.210093 | 2.539862 | 27.511871 | 0.232580 | 0.232580 | 4.88e-11 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 48.241171 | 24.710531 | 988.348774 | 298.058499 | 0.209384 | 70.591345 | 1.158466 | 1.158466 | 5.10e-11 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 85.804596 | 23.474627 | 1007.108268 | 299.605408 | 0.051251 | 62.584697 | 0.778114 | 0.778114 | 4.38e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 20.143358 | 11.723170 | 743.187216 | 290.210093 | 2.539862 | 25.925669 | 0.704136 | 0.704136 | 4.69e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 48.241171 | 25.120009 | 988.348774 | 298.058499 | 0.209384 | 72.477248 | 1.192810 | 1.192810 | 2.16e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 85.804596 | 23.756613 | 1007.108268 | 299.605408 | 0.051251 | 63.593435 | 0.791490 | 0.791490 | 1.34e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 20.143358 | 12.085274 | 743.187216 | 290.210093 | 2.539862 | 26.641637 | 0.720856 | 0.720856 | 3.93e-13 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 48.241171 | 25.398943 | 988.348774 | 298.058499 | 0.209384 | 73.574292 | 1.212963 | 1.212963 | 5.56e-11 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 85.804596 | 23.952441 | 1007.108268 | 299.605408 | 0.051251 | 64.336356 | 0.801390 | 0.801390 | -2.23e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 20.143358 | 12.348773 | 743.187216 | 290.210093 | 2.539862 | 27.087127 | 0.731314 | 0.731314 | 2.23e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 48.241171 | 25.599327 | 988.348774 | 298.058499 | 0.209384 | 74.502008 | 1.230094 | 1.230094 | -2.70e-10 | -0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 85.804596 | 24.105412 | 1007.108268 | 299.605408 | 0.051251 | 64.946376 | 0.809550 | 0.809550 | 4.12e-10 | 0.000 |
models.itu676.gaseous_attenuation_slant_path | 29.00 | 20.143358 | 12.547214 | 743.187216 | 290.210093 | 2.539862 | 27.511871 | 0.741298 | 0.741298 | 6.94e-12 | 0.000 |
Function gamma_exact¶
The table below contains the results of testing function gamma_exact
.
The test cases were extracted from spreadsheet ITURP676-12_gamma.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
f = 12.0 # (GHz)
P = 1013.25 # (hPA)
rho = 7.5 # (g/cm3)
T = 288.15 # (K)
# Make call to test-function gamma_exact
itur_val = itur.models.itu676.gamma_exact(f=f, P=P, rho=rho, T=T)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.018233652 # (dB/km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | f (GHz) | P (hPA) | rho (g/cm3) | T (K) | ITU Validation (dB/km) | ITU-Rpy Result (dB/km) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|
models.itu676.gamma_exact | 12.0 | 1013.25 | 7.5 | 288.15 | 0.018234 | 0.018234 | -2.89e-10 | -0.000 |
models.itu676.gamma_exact | 20.0 | 1013.25 | 7.5 | 288.15 | 0.108931 | 0.108931 | -2.93e-10 | -0.000 |
models.itu676.gamma_exact | 60.0 | 1013.25 | 7.5 | 288.15 | 14.778317 | 14.778317 | 2.88e-09 | 0.000 |
models.itu676.gamma_exact | 90.0 | 1013.25 | 7.5 | 288.15 | 0.380843 | 0.380843 | -4.95e-10 | -0.000 |
models.itu676.gamma_exact | 130.0 | 1013.25 | 7.5 | 288.15 | 0.793354 | 0.793354 | -2.46e-10 | -0.000 |
models.itu676.gamma_exact | 1.0 | 1013.25 | 7.5 | 288.15 | 0.005440 | 0.005440 | 2.15e-10 | 0.000 |
models.itu676.gamma_exact | 2.0 | 1013.25 | 7.5 | 288.15 | 0.006920 | 0.006920 | 1.47e-10 | 0.000 |
models.itu676.gamma_exact | 3.0 | 1013.25 | 7.5 | 288.15 | 0.007539 | 0.007539 | 1.08e-11 | 0.000 |
models.itu676.gamma_exact | 4.0 | 1013.25 | 7.5 | 288.15 | 0.008089 | 0.008089 | -2.01e-10 | -0.000 |
models.itu676.gamma_exact | 5.0 | 1013.25 | 7.5 | 288.15 | 0.008714 | 0.008714 | -1.77e-10 | -0.000 |
models.itu676.gamma_exact | 6.0 | 1013.25 | 7.5 | 288.15 | 0.009459 | 0.009459 | 1.13e-10 | 0.000 |
models.itu676.gamma_exact | 7.0 | 1013.25 | 7.5 | 288.15 | 0.010351 | 0.010351 | 3.42e-10 | 0.000 |
models.itu676.gamma_exact | 8.0 | 1013.25 | 7.5 | 288.15 | 0.011416 | 0.011416 | -2.99e-10 | -0.000 |
models.itu676.gamma_exact | 9.0 | 1013.25 | 7.5 | 288.15 | 0.012684 | 0.012684 | -1.82e-10 | -0.000 |
models.itu676.gamma_exact | 10.0 | 1013.25 | 7.5 | 288.15 | 0.014199 | 0.014199 | 5.18e-11 | 0.000 |
models.itu676.gamma_exact | 11.0 | 1013.25 | 7.5 | 288.15 | 0.016019 | 0.016019 | -1.24e-10 | -0.000 |
models.itu676.gamma_exact | 12.0 | 1013.25 | 7.5 | 288.15 | 0.018234 | 0.018234 | -2.89e-10 | -0.000 |
models.itu676.gamma_exact | 13.0 | 1013.25 | 7.5 | 288.15 | 0.020980 | 0.020980 | -1.02e-10 | -0.000 |
models.itu676.gamma_exact | 14.0 | 1013.25 | 7.5 | 288.15 | 0.024473 | 0.024473 | -1.31e-10 | -0.000 |
models.itu676.gamma_exact | 15.0 | 1013.25 | 7.5 | 288.15 | 0.029058 | 0.029058 | -5.96e-11 | -0.000 |
models.itu676.gamma_exact | 16.0 | 1013.25 | 7.5 | 288.15 | 0.035316 | 0.035316 | -9.40e-11 | -0.000 |
models.itu676.gamma_exact | 17.0 | 1013.25 | 7.5 | 288.15 | 0.044234 | 0.044234 | -8.23e-11 | -0.000 |
models.itu676.gamma_exact | 18.0 | 1013.25 | 7.5 | 288.15 | 0.057513 | 0.057513 | 1.20e-10 | 0.000 |
models.itu676.gamma_exact | 19.0 | 1013.25 | 7.5 | 288.15 | 0.077918 | 0.077918 | -1.87e-10 | -0.000 |
models.itu676.gamma_exact | 20.0 | 1013.25 | 7.5 | 288.15 | 0.108931 | 0.108931 | -2.93e-10 | -0.000 |
models.itu676.gamma_exact | 21.0 | 1013.25 | 7.5 | 288.15 | 0.150432 | 0.150432 | 1.94e-10 | 0.000 |
models.itu676.gamma_exact | 22.0 | 1013.25 | 7.5 | 288.15 | 0.187337 | 0.187337 | -3.02e-10 | -0.000 |
models.itu676.gamma_exact | 23.0 | 1013.25 | 7.5 | 288.15 | 0.194289 | 0.194289 | 4.49e-11 | 0.000 |
models.itu676.gamma_exact | 24.0 | 1013.25 | 7.5 | 288.15 | 0.173161 | 0.173161 | -1.46e-10 | -0.000 |
models.itu676.gamma_exact | 25.0 | 1013.25 | 7.5 | 288.15 | 0.146235 | 0.146235 | 2.06e-10 | 0.000 |
models.itu676.gamma_exact | 26.0 | 1013.25 | 7.5 | 288.15 | 0.125028 | 0.125028 | 1.32e-10 | 0.000 |
models.itu676.gamma_exact | 27.0 | 1013.25 | 7.5 | 288.15 | 0.110735 | 0.110735 | -2.58e-10 | -0.000 |
models.itu676.gamma_exact | 28.0 | 1013.25 | 7.5 | 288.15 | 0.101756 | 0.101756 | -2.07e-10 | -0.000 |
models.itu676.gamma_exact | 29.0 | 1013.25 | 7.5 | 288.15 | 0.096494 | 0.096494 | 3.25e-10 | 0.000 |
models.itu676.gamma_exact | 30.0 | 1013.25 | 7.5 | 288.15 | 0.093825 | 0.093825 | -2.65e-10 | -0.000 |
models.itu676.gamma_exact | 31.0 | 1013.25 | 7.5 | 288.15 | 0.093020 | 0.093020 | -1.86e-10 | -0.000 |
models.itu676.gamma_exact | 32.0 | 1013.25 | 7.5 | 288.15 | 0.093619 | 0.093619 | -2.43e-10 | -0.000 |
models.itu676.gamma_exact | 33.0 | 1013.25 | 7.5 | 288.15 | 0.095332 | 0.095332 | -4.62e-10 | -0.000 |
models.itu676.gamma_exact | 34.0 | 1013.25 | 7.5 | 288.15 | 0.097979 | 0.097979 | -1.93e-10 | -0.000 |
models.itu676.gamma_exact | 35.0 | 1013.25 | 7.5 | 288.15 | 0.101457 | 0.101457 | -4.89e-10 | -0.000 |
models.itu676.gamma_exact | 36.0 | 1013.25 | 7.5 | 288.15 | 0.105720 | 0.105720 | 4.54e-10 | 0.000 |
models.itu676.gamma_exact | 37.0 | 1013.25 | 7.5 | 288.15 | 0.110762 | 0.110762 | 2.84e-10 | 0.000 |
models.itu676.gamma_exact | 38.0 | 1013.25 | 7.5 | 288.15 | 0.116615 | 0.116615 | 1.65e-10 | 0.000 |
models.itu676.gamma_exact | 39.0 | 1013.25 | 7.5 | 288.15 | 0.123352 | 0.123352 | 2.33e-10 | 0.000 |
models.itu676.gamma_exact | 40.0 | 1013.25 | 7.5 | 288.15 | 0.131086 | 0.131086 | 2.80e-10 | 0.000 |
models.itu676.gamma_exact | 41.0 | 1013.25 | 7.5 | 288.15 | 0.139981 | 0.139981 | 2.68e-10 | 0.000 |
models.itu676.gamma_exact | 42.0 | 1013.25 | 7.5 | 288.15 | 0.150269 | 0.150269 | 3.31e-10 | 0.000 |
models.itu676.gamma_exact | 43.0 | 1013.25 | 7.5 | 288.15 | 0.162276 | 0.162276 | -4.90e-12 | -0.000 |
models.itu676.gamma_exact | 44.0 | 1013.25 | 7.5 | 288.15 | 0.176460 | 0.176460 | 1.26e-10 | 0.000 |
models.itu676.gamma_exact | 45.0 | 1013.25 | 7.5 | 288.15 | 0.193481 | 0.193481 | 3.81e-10 | 0.000 |
models.itu676.gamma_exact | 46.0 | 1013.25 | 7.5 | 288.15 | 0.214318 | 0.214318 | -1.86e-10 | -0.000 |
models.itu676.gamma_exact | 47.0 | 1013.25 | 7.5 | 288.15 | 0.240480 | 0.240480 | 4.84e-10 | 0.000 |
models.itu676.gamma_exact | 48.0 | 1013.25 | 7.5 | 288.15 | 0.274425 | 0.274425 | -4.91e-10 | -0.000 |
models.itu676.gamma_exact | 49.0 | 1013.25 | 7.5 | 288.15 | 0.320551 | 0.320551 | -1.99e-10 | -0.000 |
models.itu676.gamma_exact | 50.0 | 1013.25 | 7.5 | 288.15 | 0.388427 | 0.388427 | 1.99e-10 | 0.000 |
models.itu676.gamma_exact | 51.0 | 1013.25 | 7.5 | 288.15 | 0.504721 | 0.504721 | -3.93e-10 | -0.000 |
models.itu676.gamma_exact | 52.0 | 1013.25 | 7.5 | 288.15 | 0.737479 | 0.737479 | 1.71e-10 | 0.000 |
models.itu676.gamma_exact | 53.0 | 1013.25 | 7.5 | 288.15 | 1.249765 | 1.249765 | 4.17e-10 | 0.000 |
models.itu676.gamma_exact | 54.0 | 1013.25 | 7.5 | 288.15 | 2.338904 | 2.338904 | -1.21e-10 | -0.000 |
models.itu676.gamma_exact | 55.0 | 1013.25 | 7.5 | 288.15 | 4.324956 | 4.324956 | 3.08e-10 | 0.000 |
models.itu676.gamma_exact | 56.0 | 1013.25 | 7.5 | 288.15 | 7.191136 | 7.191136 | 4.19e-11 | 0.000 |
models.itu676.gamma_exact | 57.0 | 1013.25 | 7.5 | 288.15 | 10.205851 | 10.205852 | -3.39e-09 | -0.000 |
models.itu676.gamma_exact | 58.0 | 1013.25 | 7.5 | 288.15 | 12.498391 | 12.498391 | -3.72e-09 | -0.000 |
models.itu676.gamma_exact | 59.0 | 1013.25 | 7.5 | 288.15 | 13.785280 | 13.785280 | -2.11e-09 | -0.000 |
models.itu676.gamma_exact | 60.0 | 1013.25 | 7.5 | 288.15 | 14.778317 | 14.778317 | 2.88e-09 | 0.000 |
models.itu676.gamma_exact | 61.0 | 1013.25 | 7.5 | 288.15 | 15.166986 | 15.166986 | -2.31e-09 | -0.000 |
models.itu676.gamma_exact | 62.0 | 1013.25 | 7.5 | 288.15 | 14.161167 | 14.161167 | -4.44e-09 | -0.000 |
models.itu676.gamma_exact | 63.0 | 1013.25 | 7.5 | 288.15 | 11.001342 | 11.001342 | -2.97e-09 | -0.000 |
models.itu676.gamma_exact | 64.0 | 1013.25 | 7.5 | 288.15 | 7.020353 | 7.020353 | -6.92e-11 | -0.000 |
models.itu676.gamma_exact | 65.0 | 1013.25 | 7.5 | 288.15 | 3.990338 | 3.990338 | -1.21e-10 | -0.000 |
models.itu676.gamma_exact | 66.0 | 1013.25 | 7.5 | 288.15 | 2.154196 | 2.154196 | 7.42e-11 | 0.000 |
models.itu676.gamma_exact | 67.0 | 1013.25 | 7.5 | 288.15 | 1.227115 | 1.227115 | 4.67e-10 | 0.000 |
models.itu676.gamma_exact | 68.0 | 1013.25 | 7.5 | 288.15 | 0.805021 | 0.805021 | 1.83e-10 | 0.000 |
models.itu676.gamma_exact | 69.0 | 1013.25 | 7.5 | 288.15 | 0.611819 | 0.611819 | -4.54e-10 | -0.000 |
models.itu676.gamma_exact | 70.0 | 1013.25 | 7.5 | 288.15 | 0.513993 | 0.513993 | 4.88e-10 | 0.000 |
models.itu676.gamma_exact | 71.0 | 1013.25 | 7.5 | 288.15 | 0.456680 | 0.456680 | -3.64e-10 | -0.000 |
models.itu676.gamma_exact | 72.0 | 1013.25 | 7.5 | 288.15 | 0.419049 | 0.419049 | 3.12e-10 | 0.000 |
models.itu676.gamma_exact | 73.0 | 1013.25 | 7.5 | 288.15 | 0.393232 | 0.393232 | -1.70e-10 | -0.000 |
models.itu676.gamma_exact | 74.0 | 1013.25 | 7.5 | 288.15 | 0.375190 | 0.375190 | -4.12e-10 | -0.000 |
models.itu676.gamma_exact | 75.0 | 1013.25 | 7.5 | 288.15 | 0.362554 | 0.362554 | 8.17e-11 | 0.000 |
models.itu676.gamma_exact | 76.0 | 1013.25 | 7.5 | 288.15 | 0.353835 | 0.353835 | 4.18e-10 | 0.000 |
models.itu676.gamma_exact | 77.0 | 1013.25 | 7.5 | 288.15 | 0.348044 | 0.348044 | -2.67e-10 | -0.000 |
models.itu676.gamma_exact | 78.0 | 1013.25 | 7.5 | 288.15 | 0.344501 | 0.344501 | -4.78e-10 | -0.000 |
models.itu676.gamma_exact | 79.0 | 1013.25 | 7.5 | 288.15 | 0.342726 | 0.342726 | -1.19e-10 | -0.000 |
models.itu676.gamma_exact | 80.0 | 1013.25 | 7.5 | 288.15 | 0.342368 | 0.342368 | 9.74e-11 | 0.000 |
models.itu676.gamma_exact | 81.0 | 1013.25 | 7.5 | 288.15 | 0.343167 | 0.343167 | -1.40e-10 | -0.000 |
models.itu676.gamma_exact | 82.0 | 1013.25 | 7.5 | 288.15 | 0.344926 | 0.344926 | -1.13e-10 | -0.000 |
models.itu676.gamma_exact | 83.0 | 1013.25 | 7.5 | 288.15 | 0.347495 | 0.347495 | -4.10e-10 | -0.000 |
models.itu676.gamma_exact | 84.0 | 1013.25 | 7.5 | 288.15 | 0.350757 | 0.350757 | 1.18e-10 | 0.000 |
models.itu676.gamma_exact | 85.0 | 1013.25 | 7.5 | 288.15 | 0.354619 | 0.354619 | -4.94e-10 | -0.000 |
models.itu676.gamma_exact | 86.0 | 1013.25 | 7.5 | 288.15 | 0.359008 | 0.359008 | 2.15e-10 | 0.000 |
models.itu676.gamma_exact | 87.0 | 1013.25 | 7.5 | 288.15 | 0.363867 | 0.363867 | -4.80e-10 | -0.000 |
models.itu676.gamma_exact | 88.0 | 1013.25 | 7.5 | 288.15 | 0.369150 | 0.369150 | -4.01e-10 | -0.000 |
models.itu676.gamma_exact | 89.0 | 1013.25 | 7.5 | 288.15 | 0.374818 | 0.374818 | 3.30e-10 | 0.000 |
models.itu676.gamma_exact | 90.0 | 1013.25 | 7.5 | 288.15 | 0.380843 | 0.380843 | -4.95e-10 | -0.000 |
models.itu676.gamma_exact | 91.0 | 1013.25 | 7.5 | 288.15 | 0.387202 | 0.387202 | -1.20e-10 | -0.000 |
models.itu676.gamma_exact | 92.0 | 1013.25 | 7.5 | 288.15 | 0.393877 | 0.393877 | 2.12e-10 | 0.000 |
models.itu676.gamma_exact | 93.0 | 1013.25 | 7.5 | 288.15 | 0.400855 | 0.400855 | -3.37e-10 | -0.000 |
models.itu676.gamma_exact | 94.0 | 1013.25 | 7.5 | 288.15 | 0.408129 | 0.408129 | -3.90e-11 | -0.000 |
models.itu676.gamma_exact | 95.0 | 1013.25 | 7.5 | 288.15 | 0.415693 | 0.415693 | -1.90e-10 | -0.000 |
models.itu676.gamma_exact | 96.0 | 1013.25 | 7.5 | 288.15 | 0.423549 | 0.423549 | 2.48e-10 | 0.000 |
models.itu676.gamma_exact | 97.0 | 1013.25 | 7.5 | 288.15 | 0.431701 | 0.431701 | 3.52e-10 | 0.000 |
models.itu676.gamma_exact | 98.0 | 1013.25 | 7.5 | 288.15 | 0.440158 | 0.440158 | 1.15e-10 | 0.000 |
models.itu676.gamma_exact | 99.0 | 1013.25 | 7.5 | 288.15 | 0.448936 | 0.448936 | -3.11e-10 | -0.000 |
models.itu676.gamma_exact | 100.0 | 1013.25 | 7.5 | 288.15 | 0.458059 | 0.458059 | 2.49e-10 | 0.000 |
models.itu676.gamma_exact | 101.0 | 1013.25 | 7.5 | 288.15 | 0.467558 | 0.467558 | -2.27e-10 | -0.000 |
models.itu676.gamma_exact | 102.0 | 1013.25 | 7.5 | 288.15 | 0.477477 | 0.477477 | -1.65e-10 | -0.000 |
models.itu676.gamma_exact | 103.0 | 1013.25 | 7.5 | 288.15 | 0.487876 | 0.487876 | 1.86e-10 | 0.000 |
models.itu676.gamma_exact | 104.0 | 1013.25 | 7.5 | 288.15 | 0.498836 | 0.498836 | 9.17e-12 | 0.000 |
models.itu676.gamma_exact | 105.0 | 1013.25 | 7.5 | 288.15 | 0.510473 | 0.510473 | 3.16e-10 | 0.000 |
models.itu676.gamma_exact | 106.0 | 1013.25 | 7.5 | 288.15 | 0.522944 | 0.522944 | 1.69e-10 | 0.000 |
models.itu676.gamma_exact | 107.0 | 1013.25 | 7.5 | 288.15 | 0.536477 | 0.536477 | 3.96e-10 | 0.000 |
models.itu676.gamma_exact | 108.0 | 1013.25 | 7.5 | 288.15 | 0.551407 | 0.551407 | -2.42e-10 | -0.000 |
models.itu676.gamma_exact | 109.0 | 1013.25 | 7.5 | 288.15 | 0.568236 | 0.568236 | -2.64e-11 | -0.000 |
models.itu676.gamma_exact | 110.0 | 1013.25 | 7.5 | 288.15 | 0.587749 | 0.587749 | 2.53e-10 | 0.000 |
models.itu676.gamma_exact | 111.0 | 1013.25 | 7.5 | 288.15 | 0.611222 | 0.611222 | 4.85e-10 | 0.000 |
models.itu676.gamma_exact | 112.0 | 1013.25 | 7.5 | 288.15 | 0.640824 | 0.640824 | -1.98e-10 | -0.000 |
models.itu676.gamma_exact | 113.0 | 1013.25 | 7.5 | 288.15 | 0.680468 | 0.680468 | 1.71e-10 | 0.000 |
models.itu676.gamma_exact | 114.0 | 1013.25 | 7.5 | 288.15 | 0.737669 | 0.737669 | 1.32e-11 | 0.000 |
models.itu676.gamma_exact | 115.0 | 1013.25 | 7.5 | 288.15 | 0.827930 | 0.827930 | -4.62e-10 | -0.000 |
models.itu676.gamma_exact | 116.0 | 1013.25 | 7.5 | 288.15 | 0.984980 | 0.984980 | 4.85e-10 | 0.000 |
models.itu676.gamma_exact | 117.0 | 1013.25 | 7.5 | 288.15 | 1.277069 | 1.277069 | 2.73e-10 | 0.000 |
models.itu676.gamma_exact | 118.0 | 1013.25 | 7.5 | 288.15 | 1.740788 | 1.740788 | -4.65e-10 | -0.000 |
models.itu676.gamma_exact | 119.0 | 1013.25 | 7.5 | 288.15 | 1.924373 | 1.924373 | 2.69e-10 | 0.000 |
models.itu676.gamma_exact | 120.0 | 1013.25 | 7.5 | 288.15 | 1.515969 | 1.515969 | 8.54e-11 | 0.000 |
models.itu676.gamma_exact | 121.0 | 1013.25 | 7.5 | 288.15 | 1.150394 | 1.150394 | 6.17e-11 | 0.000 |
models.itu676.gamma_exact | 122.0 | 1013.25 | 7.5 | 288.15 | 0.960113 | 0.960113 | -3.17e-10 | -0.000 |
models.itu676.gamma_exact | 123.0 | 1013.25 | 7.5 | 288.15 | 0.865748 | 0.865748 | -2.29e-12 | -0.000 |
models.itu676.gamma_exact | 124.0 | 1013.25 | 7.5 | 288.15 | 0.817871 | 0.817871 | -4.18e-10 | -0.000 |
models.itu676.gamma_exact | 125.0 | 1013.25 | 7.5 | 288.15 | 0.793758 | 0.793758 | 1.82e-10 | 0.000 |
models.itu676.gamma_exact | 126.0 | 1013.25 | 7.5 | 288.15 | 0.782753 | 0.782753 | -1.29e-10 | -0.000 |
models.itu676.gamma_exact | 127.0 | 1013.25 | 7.5 | 288.15 | 0.779515 | 0.779515 | -1.12e-11 | -0.000 |
models.itu676.gamma_exact | 128.0 | 1013.25 | 7.5 | 288.15 | 0.781178 | 0.781178 | 1.29e-10 | 0.000 |
models.itu676.gamma_exact | 129.0 | 1013.25 | 7.5 | 288.15 | 0.786116 | 0.786116 | -2.43e-10 | -0.000 |
models.itu676.gamma_exact | 130.0 | 1013.25 | 7.5 | 288.15 | 0.793354 | 0.793354 | -2.46e-10 | -0.000 |
models.itu676.gamma_exact | 131.0 | 1013.25 | 7.5 | 288.15 | 0.802287 | 0.802287 | 2.44e-10 | 0.000 |
models.itu676.gamma_exact | 132.0 | 1013.25 | 7.5 | 288.15 | 0.812525 | 0.812525 | 6.00e-11 | 0.000 |
models.itu676.gamma_exact | 133.0 | 1013.25 | 7.5 | 288.15 | 0.823814 | 0.823814 | -1.49e-10 | -0.000 |
models.itu676.gamma_exact | 134.0 | 1013.25 | 7.5 | 288.15 | 0.835981 | 0.835981 | -4.23e-10 | -0.000 |
models.itu676.gamma_exact | 135.0 | 1013.25 | 7.5 | 288.15 | 0.848912 | 0.848912 | -4.39e-10 | -0.000 |
models.itu676.gamma_exact | 136.0 | 1013.25 | 7.5 | 288.15 | 0.862531 | 0.862531 | -3.39e-10 | -0.000 |
models.itu676.gamma_exact | 137.0 | 1013.25 | 7.5 | 288.15 | 0.876789 | 0.876789 | 7.94e-11 | 0.000 |
models.itu676.gamma_exact | 138.0 | 1013.25 | 7.5 | 288.15 | 0.891658 | 0.891658 | 2.07e-10 | 0.000 |
models.itu676.gamma_exact | 139.0 | 1013.25 | 7.5 | 288.15 | 0.907125 | 0.907125 | 5.72e-11 | 0.000 |
models.itu676.gamma_exact | 140.0 | 1013.25 | 7.5 | 288.15 | 0.923189 | 0.923189 | -3.51e-10 | -0.000 |
models.itu676.gamma_exact | 141.0 | 1013.25 | 7.5 | 288.15 | 0.939861 | 0.939861 | -1.21e-10 | -0.000 |
models.itu676.gamma_exact | 142.0 | 1013.25 | 7.5 | 288.15 | 0.957161 | 0.957161 | 1.48e-10 | 0.000 |
models.itu676.gamma_exact | 143.0 | 1013.25 | 7.5 | 288.15 | 0.975117 | 0.975117 | 2.49e-10 | 0.000 |
models.itu676.gamma_exact | 144.0 | 1013.25 | 7.5 | 288.15 | 0.993767 | 0.993767 | -3.37e-10 | -0.000 |
models.itu676.gamma_exact | 145.0 | 1013.25 | 7.5 | 288.15 | 1.013156 | 1.013156 | -1.90e-10 | -0.000 |
models.itu676.gamma_exact | 146.0 | 1013.25 | 7.5 | 288.15 | 1.033342 | 1.033342 | -1.45e-10 | -0.000 |
models.itu676.gamma_exact | 147.0 | 1013.25 | 7.5 | 288.15 | 1.054390 | 1.054390 | -3.04e-10 | -0.000 |
models.itu676.gamma_exact | 148.0 | 1013.25 | 7.5 | 288.15 | 1.076380 | 1.076380 | 4.38e-10 | 0.000 |
models.itu676.gamma_exact | 149.0 | 1013.25 | 7.5 | 288.15 | 1.099402 | 1.099402 | -1.43e-10 | -0.000 |
models.itu676.gamma_exact | 150.0 | 1013.25 | 7.5 | 288.15 | 1.123565 | 1.123565 | -1.98e-10 | -0.000 |
models.itu676.gamma_exact | 151.0 | 1013.25 | 7.5 | 288.15 | 1.148992 | 1.148992 | -1.71e-10 | -0.000 |
models.itu676.gamma_exact | 152.0 | 1013.25 | 7.5 | 288.15 | 1.175832 | 1.175832 | 4.13e-10 | 0.000 |
models.itu676.gamma_exact | 153.0 | 1013.25 | 7.5 | 288.15 | 1.204257 | 1.204257 | -6.22e-11 | -0.000 |
models.itu676.gamma_exact | 154.0 | 1013.25 | 7.5 | 288.15 | 1.234469 | 1.234469 | -1.30e-10 | -0.000 |
models.itu676.gamma_exact | 155.0 | 1013.25 | 7.5 | 288.15 | 1.266709 | 1.266709 | 2.64e-11 | 0.000 |
models.itu676.gamma_exact | 156.0 | 1013.25 | 7.5 | 288.15 | 1.301261 | 1.301261 | 3.28e-11 | 0.000 |
models.itu676.gamma_exact | 157.0 | 1013.25 | 7.5 | 288.15 | 1.338466 | 1.338466 | 1.11e-10 | 0.000 |
models.itu676.gamma_exact | 158.0 | 1013.25 | 7.5 | 288.15 | 1.378730 | 1.378730 | 1.79e-10 | 0.000 |
models.itu676.gamma_exact | 159.0 | 1013.25 | 7.5 | 288.15 | 1.422548 | 1.422548 | 3.02e-10 | 0.000 |
models.itu676.gamma_exact | 160.0 | 1013.25 | 7.5 | 288.15 | 1.470518 | 1.470518 | -1.56e-11 | -0.000 |
models.itu676.gamma_exact | 161.0 | 1013.25 | 7.5 | 288.15 | 1.523374 | 1.523374 | 3.33e-10 | 0.000 |
models.itu676.gamma_exact | 162.0 | 1013.25 | 7.5 | 288.15 | 1.582021 | 1.582021 | -2.02e-10 | -0.000 |
models.itu676.gamma_exact | 163.0 | 1013.25 | 7.5 | 288.15 | 1.647586 | 1.647586 | 2.83e-10 | 0.000 |
models.itu676.gamma_exact | 164.0 | 1013.25 | 7.5 | 288.15 | 1.721486 | 1.721486 | -1.83e-10 | -0.000 |
models.itu676.gamma_exact | 165.0 | 1013.25 | 7.5 | 288.15 | 1.805518 | 1.805518 | -3.18e-10 | -0.000 |
models.itu676.gamma_exact | 166.0 | 1013.25 | 7.5 | 288.15 | 1.901988 | 1.901988 | 5.04e-11 | 0.000 |
models.itu676.gamma_exact | 167.0 | 1013.25 | 7.5 | 288.15 | 2.013888 | 2.013888 | 3.77e-10 | 0.000 |
models.itu676.gamma_exact | 168.0 | 1013.25 | 7.5 | 288.15 | 2.145157 | 2.145157 | 1.30e-10 | 0.000 |
models.itu676.gamma_exact | 169.0 | 1013.25 | 7.5 | 288.15 | 2.301047 | 2.301047 | 3.02e-10 | 0.000 |
models.itu676.gamma_exact | 170.0 | 1013.25 | 7.5 | 288.15 | 2.488677 | 2.488677 | -9.00e-11 | -0.000 |
models.itu676.gamma_exact | 171.0 | 1013.25 | 7.5 | 288.15 | 2.717859 | 2.717859 | -4.51e-10 | -0.000 |
models.itu676.gamma_exact | 172.0 | 1013.25 | 7.5 | 288.15 | 3.002369 | 3.002369 | 1.18e-11 | 0.000 |
models.itu676.gamma_exact | 173.0 | 1013.25 | 7.5 | 288.15 | 3.361946 | 3.361946 | -3.52e-10 | -0.000 |
models.itu676.gamma_exact | 174.0 | 1013.25 | 7.5 | 288.15 | 3.825481 | 3.825481 | 1.16e-10 | 0.000 |
models.itu676.gamma_exact | 175.0 | 1013.25 | 7.5 | 288.15 | 4.436214 | 4.436214 | 8.38e-11 | 0.000 |
models.itu676.gamma_exact | 176.0 | 1013.25 | 7.5 | 288.15 | 5.260269 | 5.260269 | -4.04e-10 | -0.000 |
models.itu676.gamma_exact | 177.0 | 1013.25 | 7.5 | 288.15 | 6.400521 | 6.400521 | -4.44e-10 | -0.000 |
models.itu676.gamma_exact | 178.0 | 1013.25 | 7.5 | 288.15 | 8.017786 | 8.017786 | 1.23e-10 | 0.000 |
models.itu676.gamma_exact | 179.0 | 1013.25 | 7.5 | 288.15 | 10.356174 | 10.356174 | -2.11e-10 | -0.000 |
models.itu676.gamma_exact | 180.0 | 1013.25 | 7.5 | 288.15 | 13.741083 | 13.741083 | 1.92e-09 | 0.000 |
models.itu676.gamma_exact | 181.0 | 1013.25 | 7.5 | 288.15 | 18.411761 | 18.411761 | 4.05e-09 | 0.000 |
models.itu676.gamma_exact | 182.0 | 1013.25 | 7.5 | 288.15 | 23.843154 | 23.843154 | -4.24e-09 | -0.000 |
models.itu676.gamma_exact | 183.0 | 1013.25 | 7.5 | 288.15 | 27.677742 | 27.677742 | -3.00e-09 | -0.000 |
models.itu676.gamma_exact | 184.0 | 1013.25 | 7.5 | 288.15 | 27.037613 | 27.037613 | -3.92e-09 | -0.000 |
models.itu676.gamma_exact | 185.0 | 1013.25 | 7.5 | 288.15 | 22.616532 | 22.616532 | -2.71e-09 | -0.000 |
models.itu676.gamma_exact | 186.0 | 1013.25 | 7.5 | 288.15 | 17.493731 | 17.493731 | 4.00e-09 | 0.000 |
models.itu676.gamma_exact | 187.0 | 1013.25 | 7.5 | 288.15 | 13.352922 | 13.352922 | 5.21e-09 | 0.000 |
models.itu676.gamma_exact | 188.0 | 1013.25 | 7.5 | 288.15 | 10.385526 | 10.385526 | -1.44e-09 | -0.000 |
models.itu676.gamma_exact | 189.0 | 1013.25 | 7.5 | 288.15 | 8.319332 | 8.319332 | -3.17e-10 | -0.000 |
models.itu676.gamma_exact | 190.0 | 1013.25 | 7.5 | 288.15 | 6.871215 | 6.871215 | 1.14e-10 | 0.000 |
models.itu676.gamma_exact | 191.0 | 1013.25 | 7.5 | 288.15 | 5.837000 | 5.837000 | -3.69e-10 | -0.000 |
models.itu676.gamma_exact | 192.0 | 1013.25 | 7.5 | 288.15 | 5.082089 | 5.082089 | -4.70e-10 | -0.000 |
models.itu676.gamma_exact | 193.0 | 1013.25 | 7.5 | 288.15 | 4.519256 | 4.519256 | -4.58e-10 | -0.000 |
models.itu676.gamma_exact | 194.0 | 1013.25 | 7.5 | 288.15 | 4.091497 | 4.091497 | -3.04e-10 | -0.000 |
models.itu676.gamma_exact | 195.0 | 1013.25 | 7.5 | 288.15 | 3.760872 | 3.760872 | -4.51e-10 | -0.000 |
models.itu676.gamma_exact | 196.0 | 1013.25 | 7.5 | 288.15 | 3.501597 | 3.501597 | -2.17e-11 | -0.000 |
models.itu676.gamma_exact | 197.0 | 1013.25 | 7.5 | 288.15 | 3.295767 | 3.295767 | -1.65e-10 | -0.000 |
models.itu676.gamma_exact | 198.0 | 1013.25 | 7.5 | 288.15 | 3.130691 | 3.130691 | -5.55e-12 | -0.000 |
models.itu676.gamma_exact | 199.0 | 1013.25 | 7.5 | 288.15 | 2.997199 | 2.997199 | -4.00e-11 | -0.000 |
models.itu676.gamma_exact | 200.0 | 1013.25 | 7.5 | 288.15 | 2.888548 | 2.888548 | -5.17e-11 | -0.000 |
models.itu676.gamma_exact | 201.0 | 1013.25 | 7.5 | 288.15 | 2.799698 | 2.799698 | 2.36e-10 | 0.000 |
models.itu676.gamma_exact | 202.0 | 1013.25 | 7.5 | 288.15 | 2.726826 | 2.726826 | -4.59e-10 | -0.000 |
models.itu676.gamma_exact | 203.0 | 1013.25 | 7.5 | 288.15 | 2.666990 | 2.666990 | -2.84e-10 | -0.000 |
models.itu676.gamma_exact | 204.0 | 1013.25 | 7.5 | 288.15 | 2.617902 | 2.617902 | -1.26e-10 | -0.000 |
models.itu676.gamma_exact | 205.0 | 1013.25 | 7.5 | 288.15 | 2.577758 | 2.577758 | 3.54e-10 | 0.000 |
models.itu676.gamma_exact | 206.0 | 1013.25 | 7.5 | 288.15 | 2.545124 | 2.545124 | -1.81e-10 | -0.000 |
models.itu676.gamma_exact | 207.0 | 1013.25 | 7.5 | 288.15 | 2.518846 | 2.518846 | -2.31e-10 | -0.000 |
models.itu676.gamma_exact | 208.0 | 1013.25 | 7.5 | 288.15 | 2.497989 | 2.497989 | -3.72e-10 | -0.000 |
models.itu676.gamma_exact | 209.0 | 1013.25 | 7.5 | 288.15 | 2.481788 | 2.481788 | -3.87e-10 | -0.000 |
models.itu676.gamma_exact | 210.0 | 1013.25 | 7.5 | 288.15 | 2.469615 | 2.469615 | -1.71e-10 | -0.000 |
models.itu676.gamma_exact | 211.0 | 1013.25 | 7.5 | 288.15 | 2.460947 | 2.460947 | -4.40e-11 | -0.000 |
models.itu676.gamma_exact | 212.0 | 1013.25 | 7.5 | 288.15 | 2.455348 | 2.455348 | 4.72e-10 | 0.000 |
models.itu676.gamma_exact | 213.0 | 1013.25 | 7.5 | 288.15 | 2.452451 | 2.452451 | 8.93e-11 | 0.000 |
models.itu676.gamma_exact | 214.0 | 1013.25 | 7.5 | 288.15 | 2.451947 | 2.451947 | -2.71e-10 | -0.000 |
models.itu676.gamma_exact | 215.0 | 1013.25 | 7.5 | 288.15 | 2.453573 | 2.453573 | -2.32e-10 | -0.000 |
models.itu676.gamma_exact | 216.0 | 1013.25 | 7.5 | 288.15 | 2.457105 | 2.457105 | -2.24e-11 | -0.000 |
models.itu676.gamma_exact | 217.0 | 1013.25 | 7.5 | 288.15 | 2.462350 | 2.462350 | -4.17e-10 | -0.000 |
models.itu676.gamma_exact | 218.0 | 1013.25 | 7.5 | 288.15 | 2.469142 | 2.469142 | -1.30e-10 | -0.000 |
models.itu676.gamma_exact | 219.0 | 1013.25 | 7.5 | 288.15 | 2.477338 | 2.477338 | 3.03e-10 | 0.000 |
models.itu676.gamma_exact | 220.0 | 1013.25 | 7.5 | 288.15 | 2.486814 | 2.486814 | -4.93e-10 | -0.000 |
models.itu676.gamma_exact | 221.0 | 1013.25 | 7.5 | 288.15 | 2.497462 | 2.497462 | -3.36e-10 | -0.000 |
models.itu676.gamma_exact | 222.0 | 1013.25 | 7.5 | 288.15 | 2.509186 | 2.509186 | -3.94e-10 | -0.000 |
models.itu676.gamma_exact | 223.0 | 1013.25 | 7.5 | 288.15 | 2.521903 | 2.521903 | 1.21e-10 | 0.000 |
models.itu676.gamma_exact | 224.0 | 1013.25 | 7.5 | 288.15 | 2.535542 | 2.535542 | 4.92e-10 | 0.000 |
models.itu676.gamma_exact | 225.0 | 1013.25 | 7.5 | 288.15 | 2.550037 | 2.550037 | -4.50e-10 | -0.000 |
models.itu676.gamma_exact | 226.0 | 1013.25 | 7.5 | 288.15 | 2.565332 | 2.565332 | 2.67e-10 | 0.000 |
models.itu676.gamma_exact | 227.0 | 1013.25 | 7.5 | 288.15 | 2.581377 | 2.581377 | 4.10e-10 | 0.000 |
models.itu676.gamma_exact | 228.0 | 1013.25 | 7.5 | 288.15 | 2.598127 | 2.598127 | 2.78e-10 | 0.000 |
models.itu676.gamma_exact | 229.0 | 1013.25 | 7.5 | 288.15 | 2.615543 | 2.615543 | -3.37e-10 | -0.000 |
models.itu676.gamma_exact | 230.0 | 1013.25 | 7.5 | 288.15 | 2.633589 | 2.633589 | 4.63e-10 | 0.000 |
models.itu676.gamma_exact | 231.0 | 1013.25 | 7.5 | 288.15 | 2.652236 | 2.652236 | -3.24e-10 | -0.000 |
models.itu676.gamma_exact | 232.0 | 1013.25 | 7.5 | 288.15 | 2.671454 | 2.671454 | 4.86e-10 | 0.000 |
models.itu676.gamma_exact | 233.0 | 1013.25 | 7.5 | 288.15 | 2.691219 | 2.691219 | -2.53e-10 | -0.000 |
models.itu676.gamma_exact | 234.0 | 1013.25 | 7.5 | 288.15 | 2.711509 | 2.711509 | 2.25e-10 | 0.000 |
models.itu676.gamma_exact | 235.0 | 1013.25 | 7.5 | 288.15 | 2.732304 | 2.732304 | 3.76e-10 | 0.000 |
models.itu676.gamma_exact | 236.0 | 1013.25 | 7.5 | 288.15 | 2.753588 | 2.753588 | 1.16e-10 | 0.000 |
models.itu676.gamma_exact | 237.0 | 1013.25 | 7.5 | 288.15 | 2.775343 | 2.775343 | 3.22e-11 | 0.000 |
models.itu676.gamma_exact | 238.0 | 1013.25 | 7.5 | 288.15 | 2.797558 | 2.797558 | -4.52e-10 | -0.000 |
models.itu676.gamma_exact | 239.0 | 1013.25 | 7.5 | 288.15 | 2.820219 | 2.820219 | -1.17e-10 | -0.000 |
models.itu676.gamma_exact | 240.0 | 1013.25 | 7.5 | 288.15 | 2.843316 | 2.843316 | 2.11e-11 | 0.000 |
models.itu676.gamma_exact | 241.0 | 1013.25 | 7.5 | 288.15 | 2.866840 | 2.866840 | 4.19e-10 | 0.000 |
models.itu676.gamma_exact | 242.0 | 1013.25 | 7.5 | 288.15 | 2.890782 | 2.890782 | -2.46e-10 | -0.000 |
models.itu676.gamma_exact | 243.0 | 1013.25 | 7.5 | 288.15 | 2.915135 | 2.915135 | -3.25e-10 | -0.000 |
models.itu676.gamma_exact | 244.0 | 1013.25 | 7.5 | 288.15 | 2.939894 | 2.939894 | 2.11e-10 | 0.000 |
models.itu676.gamma_exact | 245.0 | 1013.25 | 7.5 | 288.15 | 2.965054 | 2.965054 | 2.56e-10 | 0.000 |
models.itu676.gamma_exact | 246.0 | 1013.25 | 7.5 | 288.15 | 2.990610 | 2.990610 | 3.24e-10 | 0.000 |
models.itu676.gamma_exact | 247.0 | 1013.25 | 7.5 | 288.15 | 3.016559 | 3.016559 | -4.15e-10 | -0.000 |
models.itu676.gamma_exact | 248.0 | 1013.25 | 7.5 | 288.15 | 3.042898 | 3.042898 | 5.60e-11 | 0.000 |
models.itu676.gamma_exact | 249.0 | 1013.25 | 7.5 | 288.15 | 3.069627 | 3.069627 | -3.56e-10 | -0.000 |
models.itu676.gamma_exact | 250.0 | 1013.25 | 7.5 | 288.15 | 3.096744 | 3.096744 | -3.29e-10 | -0.000 |
models.itu676.gamma_exact | 251.0 | 1013.25 | 7.5 | 288.15 | 3.124248 | 3.124248 | 3.68e-10 | 0.000 |
models.itu676.gamma_exact | 252.0 | 1013.25 | 7.5 | 288.15 | 3.152141 | 3.152141 | -2.69e-10 | -0.000 |
models.itu676.gamma_exact | 253.0 | 1013.25 | 7.5 | 288.15 | 3.180423 | 3.180423 | 8.10e-11 | 0.000 |
models.itu676.gamma_exact | 254.0 | 1013.25 | 7.5 | 288.15 | 3.209097 | 3.209097 | -4.40e-10 | -0.000 |
models.itu676.gamma_exact | 255.0 | 1013.25 | 7.5 | 288.15 | 3.238164 | 3.238164 | -2.72e-10 | -0.000 |
models.itu676.gamma_exact | 256.0 | 1013.25 | 7.5 | 288.15 | 3.267628 | 3.267628 | 3.82e-10 | 0.000 |
models.itu676.gamma_exact | 257.0 | 1013.25 | 7.5 | 288.15 | 3.297492 | 3.297492 | -3.92e-10 | -0.000 |
models.itu676.gamma_exact | 258.0 | 1013.25 | 7.5 | 288.15 | 3.327761 | 3.327761 | 6.93e-11 | 0.000 |
models.itu676.gamma_exact | 259.0 | 1013.25 | 7.5 | 288.15 | 3.358440 | 3.358440 | 4.02e-10 | 0.000 |
models.itu676.gamma_exact | 260.0 | 1013.25 | 7.5 | 288.15 | 3.389535 | 3.389535 | -4.13e-10 | -0.000 |
models.itu676.gamma_exact | 261.0 | 1013.25 | 7.5 | 288.15 | 3.421052 | 3.421052 | 4.66e-11 | 0.000 |
models.itu676.gamma_exact | 262.0 | 1013.25 | 7.5 | 288.15 | 3.452998 | 3.452998 | 1.63e-10 | 0.000 |
models.itu676.gamma_exact | 263.0 | 1013.25 | 7.5 | 288.15 | 3.485382 | 3.485382 | -1.77e-10 | -0.000 |
models.itu676.gamma_exact | 264.0 | 1013.25 | 7.5 | 288.15 | 3.518213 | 3.518213 | -4.94e-10 | -0.000 |
models.itu676.gamma_exact | 265.0 | 1013.25 | 7.5 | 288.15 | 3.551499 | 3.551499 | 3.37e-10 | 0.000 |
models.itu676.gamma_exact | 266.0 | 1013.25 | 7.5 | 288.15 | 3.585252 | 3.585252 | 3.80e-10 | 0.000 |
models.itu676.gamma_exact | 267.0 | 1013.25 | 7.5 | 288.15 | 3.619484 | 3.619484 | 3.57e-10 | 0.000 |
models.itu676.gamma_exact | 268.0 | 1013.25 | 7.5 | 288.15 | 3.654207 | 3.654207 | -2.07e-10 | -0.000 |
models.itu676.gamma_exact | 269.0 | 1013.25 | 7.5 | 288.15 | 3.689435 | 3.689435 | 4.13e-10 | 0.000 |
models.itu676.gamma_exact | 270.0 | 1013.25 | 7.5 | 288.15 | 3.725184 | 3.725184 | 4.29e-10 | 0.000 |
models.itu676.gamma_exact | 271.0 | 1013.25 | 7.5 | 288.15 | 3.761470 | 3.761470 | 8.06e-11 | 0.000 |
models.itu676.gamma_exact | 272.0 | 1013.25 | 7.5 | 288.15 | 3.798310 | 3.798310 | -4.66e-10 | -0.000 |
models.itu676.gamma_exact | 273.0 | 1013.25 | 7.5 | 288.15 | 3.835725 | 3.835725 | -1.25e-10 | -0.000 |
models.itu676.gamma_exact | 274.0 | 1013.25 | 7.5 | 288.15 | 3.873736 | 3.873736 | -4.56e-10 | -0.000 |
models.itu676.gamma_exact | 275.0 | 1013.25 | 7.5 | 288.15 | 3.912367 | 3.912367 | 7.15e-11 | 0.000 |
models.itu676.gamma_exact | 276.0 | 1013.25 | 7.5 | 288.15 | 3.951643 | 3.951643 | 3.65e-10 | 0.000 |
models.itu676.gamma_exact | 277.0 | 1013.25 | 7.5 | 288.15 | 3.991592 | 3.991592 | 1.24e-10 | 0.000 |
models.itu676.gamma_exact | 278.0 | 1013.25 | 7.5 | 288.15 | 4.032246 | 4.032246 | 8.69e-11 | 0.000 |
models.itu676.gamma_exact | 279.0 | 1013.25 | 7.5 | 288.15 | 4.073638 | 4.073638 | -2.35e-10 | -0.000 |
models.itu676.gamma_exact | 280.0 | 1013.25 | 7.5 | 288.15 | 4.115805 | 4.115805 | 7.53e-11 | 0.000 |
models.itu676.gamma_exact | 281.0 | 1013.25 | 7.5 | 288.15 | 4.158790 | 4.158790 | -2.97e-10 | -0.000 |
models.itu676.gamma_exact | 282.0 | 1013.25 | 7.5 | 288.15 | 4.202638 | 4.202638 | 1.22e-10 | 0.000 |
models.itu676.gamma_exact | 283.0 | 1013.25 | 7.5 | 288.15 | 4.247399 | 4.247399 | -1.71e-10 | -0.000 |
models.itu676.gamma_exact | 284.0 | 1013.25 | 7.5 | 288.15 | 4.293130 | 4.293130 | 3.96e-10 | 0.000 |
models.itu676.gamma_exact | 285.0 | 1013.25 | 7.5 | 288.15 | 4.339894 | 4.339894 | 2.71e-10 | 0.000 |
models.itu676.gamma_exact | 286.0 | 1013.25 | 7.5 | 288.15 | 4.387762 | 4.387762 | -3.64e-10 | -0.000 |
models.itu676.gamma_exact | 287.0 | 1013.25 | 7.5 | 288.15 | 4.436812 | 4.436812 | -1.82e-10 | -0.000 |
models.itu676.gamma_exact | 288.0 | 1013.25 | 7.5 | 288.15 | 4.487133 | 4.487133 | 3.26e-10 | 0.000 |
models.itu676.gamma_exact | 289.0 | 1013.25 | 7.5 | 288.15 | 4.538827 | 4.538827 | 1.83e-10 | 0.000 |
models.itu676.gamma_exact | 290.0 | 1013.25 | 7.5 | 288.15 | 4.592008 | 4.592008 | 9.68e-11 | 0.000 |
models.itu676.gamma_exact | 291.0 | 1013.25 | 7.5 | 288.15 | 4.646805 | 4.646805 | 3.68e-10 | 0.000 |
models.itu676.gamma_exact | 292.0 | 1013.25 | 7.5 | 288.15 | 4.703368 | 4.703368 | 7.39e-11 | 0.000 |
models.itu676.gamma_exact | 293.0 | 1013.25 | 7.5 | 288.15 | 4.761867 | 4.761867 | 4.35e-10 | 0.000 |
models.itu676.gamma_exact | 294.0 | 1013.25 | 7.5 | 288.15 | 4.822499 | 4.822499 | 7.84e-11 | 0.000 |
models.itu676.gamma_exact | 295.0 | 1013.25 | 7.5 | 288.15 | 4.885495 | 4.885495 | 1.83e-10 | 0.000 |
models.itu676.gamma_exact | 296.0 | 1013.25 | 7.5 | 288.15 | 4.951119 | 4.951119 | -2.10e-10 | -0.000 |
models.itu676.gamma_exact | 297.0 | 1013.25 | 7.5 | 288.15 | 5.019686 | 5.019686 | -1.72e-10 | -0.000 |
models.itu676.gamma_exact | 298.0 | 1013.25 | 7.5 | 288.15 | 5.091564 | 5.091564 | -2.90e-10 | -0.000 |
models.itu676.gamma_exact | 299.0 | 1013.25 | 7.5 | 288.15 | 5.167190 | 5.167190 | -9.81e-12 | -0.000 |
models.itu676.gamma_exact | 300.0 | 1013.25 | 7.5 | 288.15 | 5.247089 | 5.247089 | -3.87e-10 | -0.000 |
models.itu676.gamma_exact | 301.0 | 1013.25 | 7.5 | 288.15 | 5.331888 | 5.331888 | -1.70e-10 | -0.000 |
models.itu676.gamma_exact | 302.0 | 1013.25 | 7.5 | 288.15 | 5.422350 | 5.422350 | -2.41e-10 | -0.000 |
models.itu676.gamma_exact | 303.0 | 1013.25 | 7.5 | 288.15 | 5.519407 | 5.519407 | -4.98e-10 | -0.000 |
models.itu676.gamma_exact | 304.0 | 1013.25 | 7.5 | 288.15 | 5.624209 | 5.624209 | -5.51e-11 | -0.000 |
models.itu676.gamma_exact | 305.0 | 1013.25 | 7.5 | 288.15 | 5.738183 | 5.738183 | -1.26e-10 | -0.000 |
models.itu676.gamma_exact | 306.0 | 1013.25 | 7.5 | 288.15 | 5.863128 | 5.863128 | 7.16e-11 | 0.000 |
models.itu676.gamma_exact | 307.0 | 1013.25 | 7.5 | 288.15 | 6.001328 | 6.001328 | 1.73e-10 | 0.000 |
models.itu676.gamma_exact | 308.0 | 1013.25 | 7.5 | 288.15 | 6.155723 | 6.155723 | 2.83e-10 | 0.000 |
models.itu676.gamma_exact | 309.0 | 1013.25 | 7.5 | 288.15 | 6.330146 | 6.330146 | 2.30e-10 | 0.000 |
models.itu676.gamma_exact | 310.0 | 1013.25 | 7.5 | 288.15 | 6.529669 | 6.529669 | -2.21e-10 | -0.000 |
models.itu676.gamma_exact | 311.0 | 1013.25 | 7.5 | 288.15 | 6.761108 | 6.761108 | 4.60e-10 | 0.000 |
models.itu676.gamma_exact | 312.0 | 1013.25 | 7.5 | 288.15 | 7.033795 | 7.033795 | 1.90e-10 | 0.000 |
models.itu676.gamma_exact | 313.0 | 1013.25 | 7.5 | 288.15 | 7.360752 | 7.360752 | -1.27e-10 | -0.000 |
models.itu676.gamma_exact | 314.0 | 1013.25 | 7.5 | 288.15 | 7.760560 | 7.760560 | -3.14e-10 | -0.000 |
models.itu676.gamma_exact | 315.0 | 1013.25 | 7.5 | 288.15 | 8.260373 | 8.260373 | 4.20e-10 | 0.000 |
models.itu676.gamma_exact | 316.0 | 1013.25 | 7.5 | 288.15 | 8.900903 | 8.900903 | -4.79e-10 | -0.000 |
models.itu676.gamma_exact | 317.0 | 1013.25 | 7.5 | 288.15 | 9.744688 | 9.744688 | 2.60e-10 | 0.000 |
models.itu676.gamma_exact | 318.0 | 1013.25 | 7.5 | 288.15 | 10.889185 | 10.889185 | -3.27e-09 | -0.000 |
models.itu676.gamma_exact | 319.0 | 1013.25 | 7.5 | 288.15 | 12.482780 | 12.482780 | -4.83e-10 | -0.000 |
models.itu676.gamma_exact | 320.0 | 1013.25 | 7.5 | 288.15 | 14.723576 | 14.723576 | -2.88e-09 | -0.000 |
models.itu676.gamma_exact | 321.0 | 1013.25 | 7.5 | 288.15 | 17.809242 | 17.809242 | -4.34e-09 | -0.000 |
models.itu676.gamma_exact | 322.0 | 1013.25 | 7.5 | 288.15 | 21.987923 | 21.987923 | 3.10e-09 | 0.000 |
models.itu676.gamma_exact | 323.0 | 1013.25 | 7.5 | 288.15 | 27.614013 | 27.614013 | -1.58e-09 | -0.000 |
models.itu676.gamma_exact | 324.0 | 1013.25 | 7.5 | 288.15 | 34.010735 | 34.010735 | 3.77e-09 | 0.000 |
models.itu676.gamma_exact | 325.0 | 1013.25 | 7.5 | 288.15 | 37.892209 | 37.892209 | 2.59e-10 | 0.000 |
models.itu676.gamma_exact | 326.0 | 1013.25 | 7.5 | 288.15 | 35.935051 | 35.935051 | -3.16e-09 | -0.000 |
models.itu676.gamma_exact | 327.0 | 1013.25 | 7.5 | 288.15 | 29.978411 | 29.978411 | 5.21e-09 | 0.000 |
models.itu676.gamma_exact | 328.0 | 1013.25 | 7.5 | 288.15 | 23.903133 | 23.903133 | 3.35e-09 | 0.000 |
models.itu676.gamma_exact | 329.0 | 1013.25 | 7.5 | 288.15 | 19.295446 | 19.295446 | -1.62e-09 | -0.000 |
models.itu676.gamma_exact | 330.0 | 1013.25 | 7.5 | 288.15 | 16.115428 | 16.115428 | 5.62e-10 | 0.000 |
models.itu676.gamma_exact | 331.0 | 1013.25 | 7.5 | 288.15 | 13.960793 | 13.960793 | 2.97e-09 | 0.000 |
models.itu676.gamma_exact | 332.0 | 1013.25 | 7.5 | 288.15 | 12.488934 | 12.488934 | 4.08e-09 | 0.000 |
models.itu676.gamma_exact | 333.0 | 1013.25 | 7.5 | 288.15 | 11.468502 | 11.468502 | 1.91e-10 | 0.000 |
models.itu676.gamma_exact | 334.0 | 1013.25 | 7.5 | 288.15 | 10.751700 | 10.751700 | -8.71e-10 | -0.000 |
models.itu676.gamma_exact | 335.0 | 1013.25 | 7.5 | 288.15 | 10.243974 | 10.243974 | -4.13e-09 | -0.000 |
models.itu676.gamma_exact | 336.0 | 1013.25 | 7.5 | 288.15 | 9.882698 | 9.882698 | -4.29e-10 | -0.000 |
models.itu676.gamma_exact | 337.0 | 1013.25 | 7.5 | 288.15 | 9.625634 | 9.625634 | 1.37e-10 | 0.000 |
models.itu676.gamma_exact | 338.0 | 1013.25 | 7.5 | 288.15 | 9.446598 | 9.446598 | 2.47e-10 | 0.000 |
models.itu676.gamma_exact | 339.0 | 1013.25 | 7.5 | 288.15 | 9.329258 | 9.329258 | 5.55e-11 | 0.000 |
models.itu676.gamma_exact | 340.0 | 1013.25 | 7.5 | 288.15 | 9.261534 | 9.261534 | -4.24e-10 | -0.000 |
models.itu676.gamma_exact | 341.0 | 1013.25 | 7.5 | 288.15 | 9.234207 | 9.234207 | 3.01e-10 | 0.000 |
models.itu676.gamma_exact | 342.0 | 1013.25 | 7.5 | 288.15 | 9.240521 | 9.240521 | 3.05e-10 | 0.000 |
models.itu676.gamma_exact | 343.0 | 1013.25 | 7.5 | 288.15 | 9.275658 | 9.275658 | -3.72e-10 | -0.000 |
models.itu676.gamma_exact | 344.0 | 1013.25 | 7.5 | 288.15 | 9.336250 | 9.336250 | 1.72e-10 | 0.000 |
models.itu676.gamma_exact | 345.0 | 1013.25 | 7.5 | 288.15 | 9.420030 | 9.420030 | -2.90e-10 | -0.000 |
models.itu676.gamma_exact | 346.0 | 1013.25 | 7.5 | 288.15 | 9.525579 | 9.525579 | -1.13e-12 | -0.000 |
models.itu676.gamma_exact | 347.0 | 1013.25 | 7.5 | 288.15 | 9.652172 | 9.652172 | 4.61e-10 | 0.000 |
models.itu676.gamma_exact | 348.0 | 1013.25 | 7.5 | 288.15 | 9.799673 | 9.799673 | 4.90e-10 | 0.000 |
models.itu676.gamma_exact | 349.0 | 1013.25 | 7.5 | 288.15 | 9.968476 | 9.968476 | -3.37e-10 | -0.000 |
models.itu676.gamma_exact | 350.0 | 1013.25 | 7.5 | 288.15 | 10.159479 | 10.159479 | 3.44e-09 | 0.000 |
Function gamma0_exact¶
The table below contains the results of testing function gamma0_exact
.
The test cases were extracted from spreadsheet ITURP676-12_gamma.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
f = 12.0 # (GHz)
P = 1013.25 # (hPA)
rho = 7.5 # (g/cm3)
T = 288.15 # (K)
# Make call to test-function gamma0_exact
itur_val = itur.models.itu676.gamma0_exact(f=f, P=P, rho=rho, T=T)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.008698264 # (dB/km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | f (GHz) | P (hPA) | rho (g/cm3) | T (K) | ITU Validation (dB/km) | ITU-Rpy Result (dB/km) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|
models.itu676.gamma0_exact | 12.0 | 1013.25 | 7.5 | 288.15 | 0.008698 | 0.008698 | -6.88e-11 | -0.000 |
models.itu676.gamma0_exact | 20.0 | 1013.25 | 7.5 | 288.15 | 0.011884 | 0.011884 | -4.78e-10 | -0.000 |
models.itu676.gamma0_exact | 60.0 | 1013.25 | 7.5 | 288.15 | 14.623475 | 14.623475 | 3.51e-09 | 0.000 |
models.itu676.gamma0_exact | 90.0 | 1013.25 | 7.5 | 288.15 | 0.038870 | 0.038870 | -7.24e-11 | -0.000 |
models.itu676.gamma0_exact | 130.0 | 1013.25 | 7.5 | 288.15 | 0.041509 | 0.041509 | 4.00e-10 | 0.000 |
models.itu676.gamma0_exact | 1.0 | 1013.25 | 7.5 | 288.15 | 0.005389 | 0.005389 | -1.68e-10 | -0.000 |
models.itu676.gamma0_exact | 2.0 | 1013.25 | 7.5 | 288.15 | 0.006716 | 0.006716 | -4.74e-10 | -0.000 |
models.itu676.gamma0_exact | 3.0 | 1013.25 | 7.5 | 288.15 | 0.007076 | 0.007076 | -1.33e-10 | -0.000 |
models.itu676.gamma0_exact | 4.0 | 1013.25 | 7.5 | 288.15 | 0.007259 | 0.007259 | -2.78e-10 | -0.000 |
models.itu676.gamma0_exact | 5.0 | 1013.25 | 7.5 | 288.15 | 0.007400 | 0.007400 | -2.56e-10 | -0.000 |
models.itu676.gamma0_exact | 6.0 | 1013.25 | 7.5 | 288.15 | 0.007537 | 0.007537 | -8.29e-11 | -0.000 |
models.itu676.gamma0_exact | 7.0 | 1013.25 | 7.5 | 288.15 | 0.007683 | 0.007683 | -1.65e-10 | -0.000 |
models.itu676.gamma0_exact | 8.0 | 1013.25 | 7.5 | 288.15 | 0.007844 | 0.007844 | -2.52e-10 | -0.000 |
models.itu676.gamma0_exact | 9.0 | 1013.25 | 7.5 | 288.15 | 0.008023 | 0.008023 | -4.46e-10 | -0.000 |
models.itu676.gamma0_exact | 10.0 | 1013.25 | 7.5 | 288.15 | 0.008224 | 0.008224 | 2.97e-10 | 0.000 |
models.itu676.gamma0_exact | 11.0 | 1013.25 | 7.5 | 288.15 | 0.008449 | 0.008449 | -3.94e-10 | -0.000 |
models.itu676.gamma0_exact | 12.0 | 1013.25 | 7.5 | 288.15 | 0.008698 | 0.008698 | -6.88e-11 | -0.000 |
models.itu676.gamma0_exact | 13.0 | 1013.25 | 7.5 | 288.15 | 0.008975 | 0.008975 | 1.24e-10 | 0.000 |
models.itu676.gamma0_exact | 14.0 | 1013.25 | 7.5 | 288.15 | 0.009281 | 0.009281 | 3.96e-10 | 0.000 |
models.itu676.gamma0_exact | 15.0 | 1013.25 | 7.5 | 288.15 | 0.009619 | 0.009619 | -3.01e-10 | -0.000 |
models.itu676.gamma0_exact | 16.0 | 1013.25 | 7.5 | 288.15 | 0.009991 | 0.009991 | -5.30e-11 | -0.000 |
models.itu676.gamma0_exact | 17.0 | 1013.25 | 7.5 | 288.15 | 0.010400 | 0.010400 | 3.53e-10 | 0.000 |
models.itu676.gamma0_exact | 18.0 | 1013.25 | 7.5 | 288.15 | 0.010849 | 0.010849 | -3.41e-10 | -0.000 |
models.itu676.gamma0_exact | 19.0 | 1013.25 | 7.5 | 288.15 | 0.011342 | 0.011342 | -4.01e-10 | -0.000 |
models.itu676.gamma0_exact | 20.0 | 1013.25 | 7.5 | 288.15 | 0.011884 | 0.011884 | -4.78e-10 | -0.000 |
models.itu676.gamma0_exact | 21.0 | 1013.25 | 7.5 | 288.15 | 0.012478 | 0.012478 | 1.33e-10 | 0.000 |
models.itu676.gamma0_exact | 22.0 | 1013.25 | 7.5 | 288.15 | 0.013130 | 0.013130 | 3.46e-11 | 0.000 |
models.itu676.gamma0_exact | 23.0 | 1013.25 | 7.5 | 288.15 | 0.013847 | 0.013847 | 1.44e-10 | 0.000 |
models.itu676.gamma0_exact | 24.0 | 1013.25 | 7.5 | 288.15 | 0.014636 | 0.014636 | 1.79e-10 | 0.000 |
models.itu676.gamma0_exact | 25.0 | 1013.25 | 7.5 | 288.15 | 0.015505 | 0.015505 | 1.77e-10 | 0.000 |
models.itu676.gamma0_exact | 26.0 | 1013.25 | 7.5 | 288.15 | 0.016463 | 0.016463 | 3.86e-10 | 0.000 |
models.itu676.gamma0_exact | 27.0 | 1013.25 | 7.5 | 288.15 | 0.017523 | 0.017523 | -4.01e-10 | -0.000 |
models.itu676.gamma0_exact | 28.0 | 1013.25 | 7.5 | 288.15 | 0.018696 | 0.018696 | 4.76e-11 | 0.000 |
models.itu676.gamma0_exact | 29.0 | 1013.25 | 7.5 | 288.15 | 0.019999 | 0.019999 | -1.10e-10 | -0.000 |
models.itu676.gamma0_exact | 30.0 | 1013.25 | 7.5 | 288.15 | 0.021450 | 0.021450 | -2.40e-10 | -0.000 |
models.itu676.gamma0_exact | 31.0 | 1013.25 | 7.5 | 288.15 | 0.023069 | 0.023069 | 1.71e-10 | 0.000 |
models.itu676.gamma0_exact | 32.0 | 1013.25 | 7.5 | 288.15 | 0.024884 | 0.024884 | -2.24e-10 | -0.000 |
models.itu676.gamma0_exact | 33.0 | 1013.25 | 7.5 | 288.15 | 0.026925 | 0.026925 | 3.04e-10 | 0.000 |
models.itu676.gamma0_exact | 34.0 | 1013.25 | 7.5 | 288.15 | 0.029229 | 0.029229 | 7.06e-11 | 0.000 |
models.itu676.gamma0_exact | 35.0 | 1013.25 | 7.5 | 288.15 | 0.031843 | 0.031843 | 1.36e-10 | 0.000 |
models.itu676.gamma0_exact | 36.0 | 1013.25 | 7.5 | 288.15 | 0.034823 | 0.034823 | 1.43e-11 | 0.000 |
models.itu676.gamma0_exact | 37.0 | 1013.25 | 7.5 | 288.15 | 0.038239 | 0.038239 | -2.90e-10 | -0.000 |
models.itu676.gamma0_exact | 38.0 | 1013.25 | 7.5 | 288.15 | 0.042180 | 0.042180 | -4.91e-10 | -0.000 |
models.itu676.gamma0_exact | 39.0 | 1013.25 | 7.5 | 288.15 | 0.046758 | 0.046758 | 4.58e-11 | 0.000 |
models.itu676.gamma0_exact | 40.0 | 1013.25 | 7.5 | 288.15 | 0.052117 | 0.052117 | 6.41e-11 | 0.000 |
models.itu676.gamma0_exact | 41.0 | 1013.25 | 7.5 | 288.15 | 0.058445 | 0.058445 | -1.02e-10 | -0.000 |
models.itu676.gamma0_exact | 42.0 | 1013.25 | 7.5 | 288.15 | 0.065994 | 0.065994 | -1.75e-10 | -0.000 |
models.itu676.gamma0_exact | 43.0 | 1013.25 | 7.5 | 288.15 | 0.075103 | 0.075103 | -4.57e-10 | -0.000 |
models.itu676.gamma0_exact | 44.0 | 1013.25 | 7.5 | 288.15 | 0.086242 | 0.086242 | 5.34e-11 | 0.000 |
models.itu676.gamma0_exact | 45.0 | 1013.25 | 7.5 | 288.15 | 0.100081 | 0.100081 | -1.54e-10 | -0.000 |
models.itu676.gamma0_exact | 46.0 | 1013.25 | 7.5 | 288.15 | 0.117605 | 0.117605 | 2.27e-10 | 0.000 |
models.itu676.gamma0_exact | 47.0 | 1013.25 | 7.5 | 288.15 | 0.140330 | 0.140330 | -3.76e-10 | -0.000 |
models.itu676.gamma0_exact | 48.0 | 1013.25 | 7.5 | 288.15 | 0.170720 | 0.170720 | 1.56e-10 | 0.000 |
models.itu676.gamma0_exact | 49.0 | 1013.25 | 7.5 | 288.15 | 0.213175 | 0.213175 | 1.36e-11 | 0.000 |
models.itu676.gamma0_exact | 50.0 | 1013.25 | 7.5 | 288.15 | 0.277269 | 0.277269 | 4.69e-10 | 0.000 |
models.itu676.gamma0_exact | 51.0 | 1013.25 | 7.5 | 288.15 | 0.389671 | 0.389671 | -7.01e-11 | -0.000 |
models.itu676.gamma0_exact | 52.0 | 1013.25 | 7.5 | 288.15 | 0.618430 | 0.618430 | 3.45e-10 | 0.000 |
models.itu676.gamma0_exact | 53.0 | 1013.25 | 7.5 | 288.15 | 1.126612 | 1.126612 | 1.46e-11 | 0.000 |
models.itu676.gamma0_exact | 54.0 | 1013.25 | 7.5 | 288.15 | 2.211542 | 2.211542 | -3.72e-10 | -0.000 |
models.itu676.gamma0_exact | 55.0 | 1013.25 | 7.5 | 288.15 | 4.193282 | 4.193282 | 6.19e-12 | 0.000 |
models.itu676.gamma0_exact | 56.0 | 1013.25 | 7.5 | 288.15 | 7.055044 | 7.055044 | 1.49e-10 | 0.000 |
models.itu676.gamma0_exact | 57.0 | 1013.25 | 7.5 | 288.15 | 10.065238 | 10.065238 | -2.14e-09 | -0.000 |
models.itu676.gamma0_exact | 58.0 | 1013.25 | 7.5 | 288.15 | 12.353147 | 12.353147 | -1.29e-09 | -0.000 |
models.itu676.gamma0_exact | 59.0 | 1013.25 | 7.5 | 288.15 | 13.635296 | 13.635296 | -4.04e-09 | -0.000 |
models.itu676.gamma0_exact | 60.0 | 1013.25 | 7.5 | 288.15 | 14.623475 | 14.623475 | 3.51e-09 | 0.000 |
models.itu676.gamma0_exact | 61.0 | 1013.25 | 7.5 | 288.15 | 15.007159 | 15.007159 | 4.00e-09 | 0.000 |
models.itu676.gamma0_exact | 62.0 | 1013.25 | 7.5 | 288.15 | 13.996211 | 13.996211 | -2.27e-09 | -0.000 |
models.itu676.gamma0_exact | 63.0 | 1013.25 | 7.5 | 288.15 | 10.831088 | 10.831088 | -1.43e-09 | -0.000 |
models.itu676.gamma0_exact | 64.0 | 1013.25 | 7.5 | 288.15 | 6.844589 | 6.844589 | -4.91e-10 | -0.000 |
models.itu676.gamma0_exact | 65.0 | 1013.25 | 7.5 | 288.15 | 3.808804 | 3.808804 | -3.44e-10 | -0.000 |
models.itu676.gamma0_exact | 66.0 | 1013.25 | 7.5 | 288.15 | 1.966618 | 1.966618 | 2.29e-10 | 0.000 |
models.itu676.gamma0_exact | 67.0 | 1013.25 | 7.5 | 288.15 | 1.033389 | 1.033389 | -6.65e-11 | -0.000 |
models.itu676.gamma0_exact | 68.0 | 1013.25 | 7.5 | 288.15 | 0.605466 | 0.605466 | 4.26e-10 | 0.000 |
models.itu676.gamma0_exact | 69.0 | 1013.25 | 7.5 | 288.15 | 0.406986 | 0.406986 | -1.98e-10 | -0.000 |
models.itu676.gamma0_exact | 70.0 | 1013.25 | 7.5 | 288.15 | 0.304105 | 0.304105 | -1.47e-10 | -0.000 |
models.itu676.gamma0_exact | 71.0 | 1013.25 | 7.5 | 288.15 | 0.241601 | 0.241601 | -1.64e-11 | -0.000 |
models.itu676.gamma0_exact | 72.0 | 1013.25 | 7.5 | 288.15 | 0.198532 | 0.198532 | 3.84e-10 | 0.000 |
models.itu676.gamma0_exact | 73.0 | 1013.25 | 7.5 | 288.15 | 0.167046 | 0.167046 | 3.21e-10 | 0.000 |
models.itu676.gamma0_exact | 74.0 | 1013.25 | 7.5 | 288.15 | 0.143142 | 0.143142 | -4.86e-10 | -0.000 |
models.itu676.gamma0_exact | 75.0 | 1013.25 | 7.5 | 288.15 | 0.124485 | 0.124485 | 4.08e-12 | 0.000 |
models.itu676.gamma0_exact | 76.0 | 1013.25 | 7.5 | 288.15 | 0.109604 | 0.109604 | 4.89e-10 | 0.000 |
models.itu676.gamma0_exact | 77.0 | 1013.25 | 7.5 | 288.15 | 0.097526 | 0.097526 | 3.75e-10 | 0.000 |
models.itu676.gamma0_exact | 78.0 | 1013.25 | 7.5 | 288.15 | 0.087579 | 0.087579 | -4.72e-10 | -0.000 |
models.itu676.gamma0_exact | 79.0 | 1013.25 | 7.5 | 288.15 | 0.079289 | 0.079289 | -3.24e-10 | -0.000 |
models.itu676.gamma0_exact | 80.0 | 1013.25 | 7.5 | 288.15 | 0.072307 | 0.072307 | -3.27e-10 | -0.000 |
models.itu676.gamma0_exact | 81.0 | 1013.25 | 7.5 | 288.15 | 0.066378 | 0.066378 | -3.25e-10 | -0.000 |
models.itu676.gamma0_exact | 82.0 | 1013.25 | 7.5 | 288.15 | 0.061305 | 0.061305 | 3.09e-10 | 0.000 |
models.itu676.gamma0_exact | 83.0 | 1013.25 | 7.5 | 288.15 | 0.056939 | 0.056939 | -1.84e-10 | -0.000 |
models.itu676.gamma0_exact | 84.0 | 1013.25 | 7.5 | 288.15 | 0.053163 | 0.053163 | -1.40e-10 | -0.000 |
models.itu676.gamma0_exact | 85.0 | 1013.25 | 7.5 | 288.15 | 0.049886 | 0.049886 | 3.78e-10 | 0.000 |
models.itu676.gamma0_exact | 86.0 | 1013.25 | 7.5 | 288.15 | 0.047033 | 0.047033 | 3.41e-10 | 0.000 |
models.itu676.gamma0_exact | 87.0 | 1013.25 | 7.5 | 288.15 | 0.044547 | 0.044547 | 2.33e-10 | 0.000 |
models.itu676.gamma0_exact | 88.0 | 1013.25 | 7.5 | 288.15 | 0.042382 | 0.042382 | -4.06e-10 | -0.000 |
models.itu676.gamma0_exact | 89.0 | 1013.25 | 7.5 | 288.15 | 0.040500 | 0.040500 | 3.08e-10 | 0.000 |
models.itu676.gamma0_exact | 90.0 | 1013.25 | 7.5 | 288.15 | 0.038870 | 0.038870 | -7.24e-11 | -0.000 |
models.itu676.gamma0_exact | 91.0 | 1013.25 | 7.5 | 288.15 | 0.037469 | 0.037469 | 2.13e-10 | 0.000 |
models.itu676.gamma0_exact | 92.0 | 1013.25 | 7.5 | 288.15 | 0.036279 | 0.036279 | -3.94e-10 | -0.000 |
models.itu676.gamma0_exact | 93.0 | 1013.25 | 7.5 | 288.15 | 0.035286 | 0.035286 | 4.99e-11 | 0.000 |
models.itu676.gamma0_exact | 94.0 | 1013.25 | 7.5 | 288.15 | 0.034481 | 0.034481 | -5.00e-11 | -0.000 |
models.itu676.gamma0_exact | 95.0 | 1013.25 | 7.5 | 288.15 | 0.033858 | 0.033858 | 4.01e-10 | 0.000 |
models.itu676.gamma0_exact | 96.0 | 1013.25 | 7.5 | 288.15 | 0.033418 | 0.033418 | 1.96e-10 | 0.000 |
models.itu676.gamma0_exact | 97.0 | 1013.25 | 7.5 | 288.15 | 0.033163 | 0.033163 | -1.08e-12 | -0.000 |
models.itu676.gamma0_exact | 98.0 | 1013.25 | 7.5 | 288.15 | 0.033102 | 0.033102 | -3.81e-10 | -0.000 |
models.itu676.gamma0_exact | 99.0 | 1013.25 | 7.5 | 288.15 | 0.033249 | 0.033249 | -1.05e-10 | -0.000 |
models.itu676.gamma0_exact | 100.0 | 1013.25 | 7.5 | 288.15 | 0.033625 | 0.033625 | -7.81e-11 | -0.000 |
models.itu676.gamma0_exact | 101.0 | 1013.25 | 7.5 | 288.15 | 0.034262 | 0.034262 | -2.89e-10 | -0.000 |
models.itu676.gamma0_exact | 102.0 | 1013.25 | 7.5 | 288.15 | 0.035201 | 0.035201 | -4.37e-10 | -0.000 |
models.itu676.gamma0_exact | 103.0 | 1013.25 | 7.5 | 288.15 | 0.036499 | 0.036499 | -2.76e-10 | -0.000 |
models.itu676.gamma0_exact | 104.0 | 1013.25 | 7.5 | 288.15 | 0.038238 | 0.038238 | -4.76e-11 | -0.000 |
models.itu676.gamma0_exact | 105.0 | 1013.25 | 7.5 | 288.15 | 0.040527 | 0.040527 | -3.01e-10 | -0.000 |
models.itu676.gamma0_exact | 106.0 | 1013.25 | 7.5 | 288.15 | 0.043524 | 0.043524 | 2.19e-10 | 0.000 |
models.itu676.gamma0_exact | 107.0 | 1013.25 | 7.5 | 288.15 | 0.047453 | 0.047453 | -9.53e-11 | -0.000 |
models.itu676.gamma0_exact | 108.0 | 1013.25 | 7.5 | 288.15 | 0.052644 | 0.052644 | 9.67e-11 | 0.000 |
models.itu676.gamma0_exact | 109.0 | 1013.25 | 7.5 | 288.15 | 0.059596 | 0.059596 | 4.41e-10 | 0.000 |
models.itu676.gamma0_exact | 110.0 | 1013.25 | 7.5 | 288.15 | 0.069088 | 0.069088 | -2.25e-10 | -0.000 |
models.itu676.gamma0_exact | 111.0 | 1013.25 | 7.5 | 288.15 | 0.082387 | 0.082387 | -2.34e-10 | -0.000 |
models.itu676.gamma0_exact | 112.0 | 1013.25 | 7.5 | 288.15 | 0.101655 | 0.101655 | -2.43e-10 | -0.000 |
models.itu676.gamma0_exact | 113.0 | 1013.25 | 7.5 | 288.15 | 0.130787 | 0.130787 | -9.19e-12 | -0.000 |
models.itu676.gamma0_exact | 114.0 | 1013.25 | 7.5 | 288.15 | 0.177281 | 0.177281 | -2.16e-10 | -0.000 |
models.itu676.gamma0_exact | 115.0 | 1013.25 | 7.5 | 288.15 | 0.256608 | 0.256608 | 1.28e-10 | 0.000 |
models.itu676.gamma0_exact | 116.0 | 1013.25 | 7.5 | 288.15 | 0.402454 | 0.402454 | -1.58e-10 | -0.000 |
models.itu676.gamma0_exact | 117.0 | 1013.25 | 7.5 | 288.15 | 0.683016 | 0.683016 | 3.01e-10 | 0.000 |
models.itu676.gamma0_exact | 118.0 | 1013.25 | 7.5 | 288.15 | 1.134866 | 1.134866 | 1.29e-10 | 0.000 |
models.itu676.gamma0_exact | 119.0 | 1013.25 | 7.5 | 288.15 | 1.306379 | 1.306379 | 2.15e-10 | 0.000 |
models.itu676.gamma0_exact | 120.0 | 1013.25 | 7.5 | 288.15 | 0.886109 | 0.886109 | 5.60e-12 | 0.000 |
models.itu676.gamma0_exact | 121.0 | 1013.25 | 7.5 | 288.15 | 0.509172 | 0.509172 | 3.69e-10 | 0.000 |
models.itu676.gamma0_exact | 122.0 | 1013.25 | 7.5 | 288.15 | 0.307769 | 0.307769 | -3.83e-10 | -0.000 |
models.itu676.gamma0_exact | 123.0 | 1013.25 | 7.5 | 288.15 | 0.202101 | 0.202101 | -2.01e-10 | -0.000 |
models.itu676.gamma0_exact | 124.0 | 1013.25 | 7.5 | 288.15 | 0.142570 | 0.142570 | -5.33e-11 | -0.000 |
models.itu676.gamma0_exact | 125.0 | 1013.25 | 7.5 | 288.15 | 0.106446 | 0.106446 | -3.96e-10 | -0.000 |
models.itu676.gamma0_exact | 126.0 | 1013.25 | 7.5 | 288.15 | 0.083104 | 0.083104 | 2.67e-10 | 0.000 |
models.itu676.gamma0_exact | 127.0 | 1013.25 | 7.5 | 288.15 | 0.067232 | 0.067232 | -4.38e-10 | -0.000 |
models.itu676.gamma0_exact | 128.0 | 1013.25 | 7.5 | 288.15 | 0.055982 | 0.055982 | -2.29e-10 | -0.000 |
models.itu676.gamma0_exact | 129.0 | 1013.25 | 7.5 | 288.15 | 0.047732 | 0.047732 | -4.15e-10 | -0.000 |
models.itu676.gamma0_exact | 130.0 | 1013.25 | 7.5 | 288.15 | 0.041509 | 0.041509 | 4.00e-10 | 0.000 |
models.itu676.gamma0_exact | 131.0 | 1013.25 | 7.5 | 288.15 | 0.036702 | 0.036702 | -2.17e-11 | -0.000 |
models.itu676.gamma0_exact | 132.0 | 1013.25 | 7.5 | 288.15 | 0.032912 | 0.032912 | -6.43e-11 | -0.000 |
models.itu676.gamma0_exact | 133.0 | 1013.25 | 7.5 | 288.15 | 0.029873 | 0.029873 | 2.67e-10 | 0.000 |
models.itu676.gamma0_exact | 134.0 | 1013.25 | 7.5 | 288.15 | 0.027400 | 0.027400 | 1.83e-10 | 0.000 |
models.itu676.gamma0_exact | 135.0 | 1013.25 | 7.5 | 288.15 | 0.025359 | 0.025359 | -1.72e-10 | -0.000 |
models.itu676.gamma0_exact | 136.0 | 1013.25 | 7.5 | 288.15 | 0.023658 | 0.023658 | -1.46e-10 | -0.000 |
models.itu676.gamma0_exact | 137.0 | 1013.25 | 7.5 | 288.15 | 0.022224 | 0.022224 | 3.75e-10 | 0.000 |
models.itu676.gamma0_exact | 138.0 | 1013.25 | 7.5 | 288.15 | 0.021005 | 0.021005 | 8.12e-11 | 0.000 |
models.itu676.gamma0_exact | 139.0 | 1013.25 | 7.5 | 288.15 | 0.019961 | 0.019961 | -4.96e-10 | -0.000 |
models.itu676.gamma0_exact | 140.0 | 1013.25 | 7.5 | 288.15 | 0.019060 | 0.019060 | 2.75e-10 | 0.000 |
models.itu676.gamma0_exact | 141.0 | 1013.25 | 7.5 | 288.15 | 0.018278 | 0.018278 | 1.62e-10 | 0.000 |
models.itu676.gamma0_exact | 142.0 | 1013.25 | 7.5 | 288.15 | 0.017596 | 0.017596 | 1.66e-10 | 0.000 |
models.itu676.gamma0_exact | 143.0 | 1013.25 | 7.5 | 288.15 | 0.016998 | 0.016998 | -3.73e-10 | -0.000 |
models.itu676.gamma0_exact | 144.0 | 1013.25 | 7.5 | 288.15 | 0.016471 | 0.016471 | -3.81e-10 | -0.000 |
models.itu676.gamma0_exact | 145.0 | 1013.25 | 7.5 | 288.15 | 0.016006 | 0.016006 | -4.46e-10 | -0.000 |
models.itu676.gamma0_exact | 146.0 | 1013.25 | 7.5 | 288.15 | 0.015593 | 0.015593 | 3.39e-10 | 0.000 |
models.itu676.gamma0_exact | 147.0 | 1013.25 | 7.5 | 288.15 | 0.015226 | 0.015226 | 2.54e-10 | 0.000 |
models.itu676.gamma0_exact | 148.0 | 1013.25 | 7.5 | 288.15 | 0.014900 | 0.014900 | 2.64e-10 | 0.000 |
models.itu676.gamma0_exact | 149.0 | 1013.25 | 7.5 | 288.15 | 0.014608 | 0.014608 | 2.97e-10 | 0.000 |
models.itu676.gamma0_exact | 150.0 | 1013.25 | 7.5 | 288.15 | 0.014347 | 0.014347 | -2.74e-10 | -0.000 |
models.itu676.gamma0_exact | 151.0 | 1013.25 | 7.5 | 288.15 | 0.014113 | 0.014113 | -1.57e-10 | -0.000 |
models.itu676.gamma0_exact | 152.0 | 1013.25 | 7.5 | 288.15 | 0.013904 | 0.013904 | 5.37e-11 | 0.000 |
models.itu676.gamma0_exact | 153.0 | 1013.25 | 7.5 | 288.15 | 0.013717 | 0.013717 | 2.29e-10 | 0.000 |
models.itu676.gamma0_exact | 154.0 | 1013.25 | 7.5 | 288.15 | 0.013550 | 0.013550 | 7.46e-11 | 0.000 |
models.itu676.gamma0_exact | 155.0 | 1013.25 | 7.5 | 288.15 | 0.013400 | 0.013400 | 1.89e-10 | 0.000 |
models.itu676.gamma0_exact | 156.0 | 1013.25 | 7.5 | 288.15 | 0.013266 | 0.013266 | -3.84e-10 | -0.000 |
models.itu676.gamma0_exact | 157.0 | 1013.25 | 7.5 | 288.15 | 0.013146 | 0.013146 | 3.91e-11 | 0.000 |
models.itu676.gamma0_exact | 158.0 | 1013.25 | 7.5 | 288.15 | 0.013040 | 0.013040 | 3.00e-10 | 0.000 |
models.itu676.gamma0_exact | 159.0 | 1013.25 | 7.5 | 288.15 | 0.012946 | 0.012946 | -4.64e-10 | -0.000 |
models.itu676.gamma0_exact | 160.0 | 1013.25 | 7.5 | 288.15 | 0.012863 | 0.012863 | -3.19e-11 | -0.000 |
models.itu676.gamma0_exact | 161.0 | 1013.25 | 7.5 | 288.15 | 0.012790 | 0.012790 | 1.45e-10 | 0.000 |
models.itu676.gamma0_exact | 162.0 | 1013.25 | 7.5 | 288.15 | 0.012726 | 0.012726 | 2.91e-10 | 0.000 |
models.itu676.gamma0_exact | 163.0 | 1013.25 | 7.5 | 288.15 | 0.012671 | 0.012671 | 2.71e-10 | 0.000 |
models.itu676.gamma0_exact | 164.0 | 1013.25 | 7.5 | 288.15 | 0.012624 | 0.012624 | -4.16e-10 | -0.000 |
models.itu676.gamma0_exact | 165.0 | 1013.25 | 7.5 | 288.15 | 0.012585 | 0.012585 | -2.65e-10 | -0.000 |
models.itu676.gamma0_exact | 166.0 | 1013.25 | 7.5 | 288.15 | 0.012552 | 0.012552 | 2.31e-10 | 0.000 |
models.itu676.gamma0_exact | 167.0 | 1013.25 | 7.5 | 288.15 | 0.012526 | 0.012526 | 4.50e-10 | 0.000 |
models.itu676.gamma0_exact | 168.0 | 1013.25 | 7.5 | 288.15 | 0.012506 | 0.012506 | -4.50e-10 | -0.000 |
models.itu676.gamma0_exact | 169.0 | 1013.25 | 7.5 | 288.15 | 0.012492 | 0.012492 | -4.30e-10 | -0.000 |
models.itu676.gamma0_exact | 170.0 | 1013.25 | 7.5 | 288.15 | 0.012483 | 0.012483 | -1.51e-10 | -0.000 |
models.itu676.gamma0_exact | 171.0 | 1013.25 | 7.5 | 288.15 | 0.012479 | 0.012479 | -1.31e-10 | -0.000 |
models.itu676.gamma0_exact | 172.0 | 1013.25 | 7.5 | 288.15 | 0.012479 | 0.012479 | -4.00e-10 | -0.000 |
models.itu676.gamma0_exact | 173.0 | 1013.25 | 7.5 | 288.15 | 0.012484 | 0.012484 | 4.23e-10 | 0.000 |
models.itu676.gamma0_exact | 174.0 | 1013.25 | 7.5 | 288.15 | 0.012493 | 0.012493 | -3.06e-10 | -0.000 |
models.itu676.gamma0_exact | 175.0 | 1013.25 | 7.5 | 288.15 | 0.012507 | 0.012507 | -5.33e-12 | -0.000 |
models.itu676.gamma0_exact | 176.0 | 1013.25 | 7.5 | 288.15 | 0.012524 | 0.012524 | 1.12e-10 | 0.000 |
models.itu676.gamma0_exact | 177.0 | 1013.25 | 7.5 | 288.15 | 0.012544 | 0.012544 | -2.07e-10 | -0.000 |
models.itu676.gamma0_exact | 178.0 | 1013.25 | 7.5 | 288.15 | 0.012568 | 0.012568 | 2.89e-10 | 0.000 |
models.itu676.gamma0_exact | 179.0 | 1013.25 | 7.5 | 288.15 | 0.012595 | 0.012595 | -2.68e-10 | -0.000 |
models.itu676.gamma0_exact | 180.0 | 1013.25 | 7.5 | 288.15 | 0.012626 | 0.012626 | 3.54e-10 | 0.000 |
models.itu676.gamma0_exact | 181.0 | 1013.25 | 7.5 | 288.15 | 0.012659 | 0.012659 | -4.23e-10 | -0.000 |
models.itu676.gamma0_exact | 182.0 | 1013.25 | 7.5 | 288.15 | 0.012695 | 0.012695 | -2.21e-11 | -0.000 |
models.itu676.gamma0_exact | 183.0 | 1013.25 | 7.5 | 288.15 | 0.012734 | 0.012734 | 1.64e-10 | 0.000 |
models.itu676.gamma0_exact | 184.0 | 1013.25 | 7.5 | 288.15 | 0.012775 | 0.012775 | -4.54e-10 | -0.000 |
models.itu676.gamma0_exact | 185.0 | 1013.25 | 7.5 | 288.15 | 0.012819 | 0.012819 | 3.75e-11 | 0.000 |
models.itu676.gamma0_exact | 186.0 | 1013.25 | 7.5 | 288.15 | 0.012866 | 0.012866 | -3.17e-10 | -0.000 |
models.itu676.gamma0_exact | 187.0 | 1013.25 | 7.5 | 288.15 | 0.012914 | 0.012914 | 2.26e-10 | 0.000 |
models.itu676.gamma0_exact | 188.0 | 1013.25 | 7.5 | 288.15 | 0.012965 | 0.012965 | -3.86e-10 | -0.000 |
models.itu676.gamma0_exact | 189.0 | 1013.25 | 7.5 | 288.15 | 0.013018 | 0.013018 | 4.68e-10 | 0.000 |
models.itu676.gamma0_exact | 190.0 | 1013.25 | 7.5 | 288.15 | 0.013073 | 0.013073 | 4.93e-10 | 0.000 |
models.itu676.gamma0_exact | 191.0 | 1013.25 | 7.5 | 288.15 | 0.013130 | 0.013130 | -1.38e-10 | -0.000 |
models.itu676.gamma0_exact | 192.0 | 1013.25 | 7.5 | 288.15 | 0.013189 | 0.013189 | -4.40e-10 | -0.000 |
models.itu676.gamma0_exact | 193.0 | 1013.25 | 7.5 | 288.15 | 0.013250 | 0.013250 | -3.07e-10 | -0.000 |
models.itu676.gamma0_exact | 194.0 | 1013.25 | 7.5 | 288.15 | 0.013312 | 0.013312 | -2.21e-10 | -0.000 |
models.itu676.gamma0_exact | 195.0 | 1013.25 | 7.5 | 288.15 | 0.013377 | 0.013377 | 2.33e-12 | 0.000 |
models.itu676.gamma0_exact | 196.0 | 1013.25 | 7.5 | 288.15 | 0.013443 | 0.013443 | 4.57e-10 | 0.000 |
models.itu676.gamma0_exact | 197.0 | 1013.25 | 7.5 | 288.15 | 0.013511 | 0.013511 | 3.61e-10 | 0.000 |
models.itu676.gamma0_exact | 198.0 | 1013.25 | 7.5 | 288.15 | 0.013580 | 0.013580 | 2.54e-10 | 0.000 |
models.itu676.gamma0_exact | 199.0 | 1013.25 | 7.5 | 288.15 | 0.013651 | 0.013651 | 1.83e-10 | 0.000 |
models.itu676.gamma0_exact | 200.0 | 1013.25 | 7.5 | 288.15 | 0.013724 | 0.013724 | -1.33e-10 | -0.000 |
models.itu676.gamma0_exact | 201.0 | 1013.25 | 7.5 | 288.15 | 0.013798 | 0.013798 | -1.45e-10 | -0.000 |
models.itu676.gamma0_exact | 202.0 | 1013.25 | 7.5 | 288.15 | 0.013873 | 0.013873 | -3.38e-10 | -0.000 |
models.itu676.gamma0_exact | 203.0 | 1013.25 | 7.5 | 288.15 | 0.013950 | 0.013950 | -9.59e-11 | -0.000 |
models.itu676.gamma0_exact | 204.0 | 1013.25 | 7.5 | 288.15 | 0.014028 | 0.014028 | 4.18e-10 | 0.000 |
models.itu676.gamma0_exact | 205.0 | 1013.25 | 7.5 | 288.15 | 0.014107 | 0.014107 | 3.71e-10 | 0.000 |
models.itu676.gamma0_exact | 206.0 | 1013.25 | 7.5 | 288.15 | 0.014188 | 0.014188 | 3.64e-10 | 0.000 |
models.itu676.gamma0_exact | 207.0 | 1013.25 | 7.5 | 288.15 | 0.014270 | 0.014270 | -4.75e-10 | -0.000 |
models.itu676.gamma0_exact | 208.0 | 1013.25 | 7.5 | 288.15 | 0.014354 | 0.014354 | -3.98e-10 | -0.000 |
models.itu676.gamma0_exact | 209.0 | 1013.25 | 7.5 | 288.15 | 0.014438 | 0.014438 | 3.90e-11 | 0.000 |
models.itu676.gamma0_exact | 210.0 | 1013.25 | 7.5 | 288.15 | 0.014524 | 0.014524 | 5.38e-11 | 0.000 |
models.itu676.gamma0_exact | 211.0 | 1013.25 | 7.5 | 288.15 | 0.014611 | 0.014611 | -2.91e-10 | -0.000 |
models.itu676.gamma0_exact | 212.0 | 1013.25 | 7.5 | 288.15 | 0.014699 | 0.014699 | -2.47e-11 | -0.000 |
models.itu676.gamma0_exact | 213.0 | 1013.25 | 7.5 | 288.15 | 0.014789 | 0.014789 | -2.06e-10 | -0.000 |
models.itu676.gamma0_exact | 214.0 | 1013.25 | 7.5 | 288.15 | 0.014879 | 0.014879 | 1.33e-10 | 0.000 |
models.itu676.gamma0_exact | 215.0 | 1013.25 | 7.5 | 288.15 | 0.014970 | 0.014970 | 3.83e-11 | 0.000 |
models.itu676.gamma0_exact | 216.0 | 1013.25 | 7.5 | 288.15 | 0.015063 | 0.015063 | -3.17e-10 | -0.000 |
models.itu676.gamma0_exact | 217.0 | 1013.25 | 7.5 | 288.15 | 0.015157 | 0.015157 | 4.16e-10 | 0.000 |
models.itu676.gamma0_exact | 218.0 | 1013.25 | 7.5 | 288.15 | 0.015251 | 0.015251 | -2.00e-10 | -0.000 |
models.itu676.gamma0_exact | 219.0 | 1013.25 | 7.5 | 288.15 | 0.015347 | 0.015347 | -3.46e-10 | -0.000 |
models.itu676.gamma0_exact | 220.0 | 1013.25 | 7.5 | 288.15 | 0.015444 | 0.015444 | 9.23e-11 | 0.000 |
models.itu676.gamma0_exact | 221.0 | 1013.25 | 7.5 | 288.15 | 0.015541 | 0.015541 | -4.45e-10 | -0.000 |
models.itu676.gamma0_exact | 222.0 | 1013.25 | 7.5 | 288.15 | 0.015640 | 0.015640 | -1.57e-10 | -0.000 |
models.itu676.gamma0_exact | 223.0 | 1013.25 | 7.5 | 288.15 | 0.015740 | 0.015740 | 1.49e-10 | 0.000 |
models.itu676.gamma0_exact | 224.0 | 1013.25 | 7.5 | 288.15 | 0.015840 | 0.015840 | 8.53e-11 | 0.000 |
models.itu676.gamma0_exact | 225.0 | 1013.25 | 7.5 | 288.15 | 0.015942 | 0.015942 | -2.90e-10 | -0.000 |
models.itu676.gamma0_exact | 226.0 | 1013.25 | 7.5 | 288.15 | 0.016044 | 0.016044 | -4.48e-10 | -0.000 |
models.itu676.gamma0_exact | 227.0 | 1013.25 | 7.5 | 288.15 | 0.016147 | 0.016147 | -3.64e-10 | -0.000 |
models.itu676.gamma0_exact | 228.0 | 1013.25 | 7.5 | 288.15 | 0.016252 | 0.016252 | -4.97e-10 | -0.000 |
models.itu676.gamma0_exact | 229.0 | 1013.25 | 7.5 | 288.15 | 0.016357 | 0.016357 | 2.32e-10 | 0.000 |
models.itu676.gamma0_exact | 230.0 | 1013.25 | 7.5 | 288.15 | 0.016463 | 0.016463 | 4.57e-10 | 0.000 |
models.itu676.gamma0_exact | 231.0 | 1013.25 | 7.5 | 288.15 | 0.016570 | 0.016570 | 3.89e-10 | 0.000 |
models.itu676.gamma0_exact | 232.0 | 1013.25 | 7.5 | 288.15 | 0.016677 | 0.016677 | -1.70e-10 | -0.000 |
models.itu676.gamma0_exact | 233.0 | 1013.25 | 7.5 | 288.15 | 0.016786 | 0.016786 | 1.89e-10 | 0.000 |
models.itu676.gamma0_exact | 234.0 | 1013.25 | 7.5 | 288.15 | 0.016895 | 0.016895 | 4.99e-10 | 0.000 |
models.itu676.gamma0_exact | 235.0 | 1013.25 | 7.5 | 288.15 | 0.017006 | 0.017006 | 4.30e-10 | 0.000 |
models.itu676.gamma0_exact | 236.0 | 1013.25 | 7.5 | 288.15 | 0.017117 | 0.017117 | 3.00e-10 | 0.000 |
models.itu676.gamma0_exact | 237.0 | 1013.25 | 7.5 | 288.15 | 0.017228 | 0.017228 | 9.10e-11 | 0.000 |
models.itu676.gamma0_exact | 238.0 | 1013.25 | 7.5 | 288.15 | 0.017341 | 0.017341 | 4.59e-10 | 0.000 |
models.itu676.gamma0_exact | 239.0 | 1013.25 | 7.5 | 288.15 | 0.017455 | 0.017455 | -2.57e-10 | -0.000 |
models.itu676.gamma0_exact | 240.0 | 1013.25 | 7.5 | 288.15 | 0.017569 | 0.017569 | -2.29e-11 | -0.000 |
models.itu676.gamma0_exact | 241.0 | 1013.25 | 7.5 | 288.15 | 0.017684 | 0.017684 | -1.00e-10 | -0.000 |
models.itu676.gamma0_exact | 242.0 | 1013.25 | 7.5 | 288.15 | 0.017800 | 0.017800 | -3.80e-11 | -0.000 |
models.itu676.gamma0_exact | 243.0 | 1013.25 | 7.5 | 288.15 | 0.017916 | 0.017916 | 3.34e-10 | 0.000 |
models.itu676.gamma0_exact | 244.0 | 1013.25 | 7.5 | 288.15 | 0.018034 | 0.018034 | -8.39e-11 | -0.000 |
models.itu676.gamma0_exact | 245.0 | 1013.25 | 7.5 | 288.15 | 0.018152 | 0.018152 | 3.42e-10 | 0.000 |
models.itu676.gamma0_exact | 246.0 | 1013.25 | 7.5 | 288.15 | 0.018271 | 0.018271 | -1.20e-11 | -0.000 |
models.itu676.gamma0_exact | 247.0 | 1013.25 | 7.5 | 288.15 | 0.018390 | 0.018390 | -2.32e-11 | -0.000 |
models.itu676.gamma0_exact | 248.0 | 1013.25 | 7.5 | 288.15 | 0.018511 | 0.018511 | 1.84e-10 | 0.000 |
models.itu676.gamma0_exact | 249.0 | 1013.25 | 7.5 | 288.15 | 0.018632 | 0.018632 | 2.44e-10 | 0.000 |
models.itu676.gamma0_exact | 250.0 | 1013.25 | 7.5 | 288.15 | 0.018754 | 0.018754 | -4.50e-10 | -0.000 |
models.itu676.gamma0_exact | 251.0 | 1013.25 | 7.5 | 288.15 | 0.018876 | 0.018876 | 2.64e-10 | 0.000 |
models.itu676.gamma0_exact | 252.0 | 1013.25 | 7.5 | 288.15 | 0.019000 | 0.019000 | 3.15e-10 | 0.000 |
models.itu676.gamma0_exact | 253.0 | 1013.25 | 7.5 | 288.15 | 0.019124 | 0.019124 | 4.06e-10 | 0.000 |
models.itu676.gamma0_exact | 254.0 | 1013.25 | 7.5 | 288.15 | 0.019249 | 0.019249 | 1.31e-11 | 0.000 |
models.itu676.gamma0_exact | 255.0 | 1013.25 | 7.5 | 288.15 | 0.019374 | 0.019374 | 3.89e-10 | 0.000 |
models.itu676.gamma0_exact | 256.0 | 1013.25 | 7.5 | 288.15 | 0.019500 | 0.019500 | -4.33e-10 | -0.000 |
models.itu676.gamma0_exact | 257.0 | 1013.25 | 7.5 | 288.15 | 0.019627 | 0.019627 | 3.58e-10 | 0.000 |
models.itu676.gamma0_exact | 258.0 | 1013.25 | 7.5 | 288.15 | 0.019755 | 0.019755 | 3.53e-10 | 0.000 |
models.itu676.gamma0_exact | 259.0 | 1013.25 | 7.5 | 288.15 | 0.019883 | 0.019883 | -7.52e-11 | -0.000 |
models.itu676.gamma0_exact | 260.0 | 1013.25 | 7.5 | 288.15 | 0.020012 | 0.020012 | 2.27e-10 | 0.000 |
models.itu676.gamma0_exact | 261.0 | 1013.25 | 7.5 | 288.15 | 0.020142 | 0.020142 | 1.93e-10 | 0.000 |
models.itu676.gamma0_exact | 262.0 | 1013.25 | 7.5 | 288.15 | 0.020273 | 0.020273 | -4.65e-10 | -0.000 |
models.itu676.gamma0_exact | 263.0 | 1013.25 | 7.5 | 288.15 | 0.020404 | 0.020404 | -2.57e-10 | -0.000 |
models.itu676.gamma0_exact | 264.0 | 1013.25 | 7.5 | 288.15 | 0.020536 | 0.020536 | 8.07e-11 | 0.000 |
models.itu676.gamma0_exact | 265.0 | 1013.25 | 7.5 | 288.15 | 0.020668 | 0.020668 | -4.12e-10 | -0.000 |
models.itu676.gamma0_exact | 266.0 | 1013.25 | 7.5 | 288.15 | 0.020801 | 0.020801 | 7.32e-11 | 0.000 |
models.itu676.gamma0_exact | 267.0 | 1013.25 | 7.5 | 288.15 | 0.020935 | 0.020935 | 1.11e-10 | 0.000 |
models.itu676.gamma0_exact | 268.0 | 1013.25 | 7.5 | 288.15 | 0.021070 | 0.021070 | 3.87e-11 | 0.000 |
models.itu676.gamma0_exact | 269.0 | 1013.25 | 7.5 | 288.15 | 0.021205 | 0.021205 | -4.82e-11 | -0.000 |
models.itu676.gamma0_exact | 270.0 | 1013.25 | 7.5 | 288.15 | 0.021341 | 0.021341 | -3.02e-10 | -0.000 |
models.itu676.gamma0_exact | 271.0 | 1013.25 | 7.5 | 288.15 | 0.021478 | 0.021478 | -1.28e-10 | -0.000 |
models.itu676.gamma0_exact | 272.0 | 1013.25 | 7.5 | 288.15 | 0.021615 | 0.021615 | -1.93e-10 | -0.000 |
models.itu676.gamma0_exact | 273.0 | 1013.25 | 7.5 | 288.15 | 0.021754 | 0.021754 | -4.28e-10 | -0.000 |
models.itu676.gamma0_exact | 274.0 | 1013.25 | 7.5 | 288.15 | 0.021892 | 0.021892 | -4.17e-11 | -0.000 |
models.itu676.gamma0_exact | 275.0 | 1013.25 | 7.5 | 288.15 | 0.022032 | 0.022032 | 4.73e-10 | 0.000 |
models.itu676.gamma0_exact | 276.0 | 1013.25 | 7.5 | 288.15 | 0.022172 | 0.022172 | 3.30e-10 | 0.000 |
models.itu676.gamma0_exact | 277.0 | 1013.25 | 7.5 | 288.15 | 0.022313 | 0.022313 | 4.40e-10 | 0.000 |
models.itu676.gamma0_exact | 278.0 | 1013.25 | 7.5 | 288.15 | 0.022455 | 0.022455 | 3.95e-10 | 0.000 |
models.itu676.gamma0_exact | 279.0 | 1013.25 | 7.5 | 288.15 | 0.022597 | 0.022597 | 4.60e-10 | 0.000 |
models.itu676.gamma0_exact | 280.0 | 1013.25 | 7.5 | 288.15 | 0.022740 | 0.022740 | -4.44e-10 | -0.000 |
models.itu676.gamma0_exact | 281.0 | 1013.25 | 7.5 | 288.15 | 0.022884 | 0.022884 | 2.50e-10 | 0.000 |
models.itu676.gamma0_exact | 282.0 | 1013.25 | 7.5 | 288.15 | 0.023028 | 0.023028 | -2.69e-10 | -0.000 |
models.itu676.gamma0_exact | 283.0 | 1013.25 | 7.5 | 288.15 | 0.023174 | 0.023174 | -2.01e-10 | -0.000 |
models.itu676.gamma0_exact | 284.0 | 1013.25 | 7.5 | 288.15 | 0.023319 | 0.023319 | -1.58e-10 | -0.000 |
models.itu676.gamma0_exact | 285.0 | 1013.25 | 7.5 | 288.15 | 0.023466 | 0.023466 | -1.83e-10 | -0.000 |
models.itu676.gamma0_exact | 286.0 | 1013.25 | 7.5 | 288.15 | 0.023614 | 0.023614 | 2.28e-10 | 0.000 |
models.itu676.gamma0_exact | 287.0 | 1013.25 | 7.5 | 288.15 | 0.023762 | 0.023762 | 9.60e-11 | 0.000 |
models.itu676.gamma0_exact | 288.0 | 1013.25 | 7.5 | 288.15 | 0.023911 | 0.023911 | -5.99e-11 | -0.000 |
models.itu676.gamma0_exact | 289.0 | 1013.25 | 7.5 | 288.15 | 0.024060 | 0.024060 | -2.58e-10 | -0.000 |
models.itu676.gamma0_exact | 290.0 | 1013.25 | 7.5 | 288.15 | 0.024211 | 0.024211 | -8.18e-11 | -0.000 |
models.itu676.gamma0_exact | 291.0 | 1013.25 | 7.5 | 288.15 | 0.024362 | 0.024362 | 2.82e-10 | 0.000 |
models.itu676.gamma0_exact | 292.0 | 1013.25 | 7.5 | 288.15 | 0.024514 | 0.024514 | 8.49e-12 | 0.000 |
models.itu676.gamma0_exact | 293.0 | 1013.25 | 7.5 | 288.15 | 0.024667 | 0.024667 | -4.07e-10 | -0.000 |
models.itu676.gamma0_exact | 294.0 | 1013.25 | 7.5 | 288.15 | 0.024820 | 0.024820 | -1.94e-10 | -0.000 |
models.itu676.gamma0_exact | 295.0 | 1013.25 | 7.5 | 288.15 | 0.024975 | 0.024975 | -3.58e-10 | -0.000 |
models.itu676.gamma0_exact | 296.0 | 1013.25 | 7.5 | 288.15 | 0.025130 | 0.025130 | 2.73e-10 | 0.000 |
models.itu676.gamma0_exact | 297.0 | 1013.25 | 7.5 | 288.15 | 0.025286 | 0.025286 | -2.06e-11 | -0.000 |
models.itu676.gamma0_exact | 298.0 | 1013.25 | 7.5 | 288.15 | 0.025443 | 0.025443 | 9.65e-11 | 0.000 |
models.itu676.gamma0_exact | 299.0 | 1013.25 | 7.5 | 288.15 | 0.025601 | 0.025601 | -6.27e-11 | -0.000 |
models.itu676.gamma0_exact | 300.0 | 1013.25 | 7.5 | 288.15 | 0.025760 | 0.025760 | -2.82e-10 | -0.000 |
models.itu676.gamma0_exact | 301.0 | 1013.25 | 7.5 | 288.15 | 0.025919 | 0.025919 | 4.73e-10 | 0.000 |
models.itu676.gamma0_exact | 302.0 | 1013.25 | 7.5 | 288.15 | 0.026080 | 0.026080 | -4.02e-11 | -0.000 |
models.itu676.gamma0_exact | 303.0 | 1013.25 | 7.5 | 288.15 | 0.026241 | 0.026241 | -4.41e-10 | -0.000 |
models.itu676.gamma0_exact | 304.0 | 1013.25 | 7.5 | 288.15 | 0.026403 | 0.026403 | 1.59e-10 | 0.000 |
models.itu676.gamma0_exact | 305.0 | 1013.25 | 7.5 | 288.15 | 0.026567 | 0.026567 | 2.86e-11 | 0.000 |
models.itu676.gamma0_exact | 306.0 | 1013.25 | 7.5 | 288.15 | 0.026731 | 0.026731 | -3.21e-10 | -0.000 |
models.itu676.gamma0_exact | 307.0 | 1013.25 | 7.5 | 288.15 | 0.026897 | 0.026897 | -2.89e-10 | -0.000 |
models.itu676.gamma0_exact | 308.0 | 1013.25 | 7.5 | 288.15 | 0.027063 | 0.027063 | -3.60e-10 | -0.000 |
models.itu676.gamma0_exact | 309.0 | 1013.25 | 7.5 | 288.15 | 0.027231 | 0.027231 | -2.96e-10 | -0.000 |
models.itu676.gamma0_exact | 310.0 | 1013.25 | 7.5 | 288.15 | 0.027399 | 0.027399 | -3.46e-10 | -0.000 |
models.itu676.gamma0_exact | 311.0 | 1013.25 | 7.5 | 288.15 | 0.027569 | 0.027569 | -4.87e-10 | -0.000 |
models.itu676.gamma0_exact | 312.0 | 1013.25 | 7.5 | 288.15 | 0.027740 | 0.027740 | 3.05e-10 | 0.000 |
models.itu676.gamma0_exact | 313.0 | 1013.25 | 7.5 | 288.15 | 0.027913 | 0.027913 | -2.39e-10 | -0.000 |
models.itu676.gamma0_exact | 314.0 | 1013.25 | 7.5 | 288.15 | 0.028086 | 0.028086 | -2.38e-11 | -0.000 |
models.itu676.gamma0_exact | 315.0 | 1013.25 | 7.5 | 288.15 | 0.028261 | 0.028261 | 2.95e-11 | 0.000 |
models.itu676.gamma0_exact | 316.0 | 1013.25 | 7.5 | 288.15 | 0.028437 | 0.028437 | -4.45e-10 | -0.000 |
models.itu676.gamma0_exact | 317.0 | 1013.25 | 7.5 | 288.15 | 0.028615 | 0.028615 | 2.53e-10 | 0.000 |
models.itu676.gamma0_exact | 318.0 | 1013.25 | 7.5 | 288.15 | 0.028795 | 0.028795 | 3.35e-10 | 0.000 |
models.itu676.gamma0_exact | 319.0 | 1013.25 | 7.5 | 288.15 | 0.028975 | 0.028975 | -1.08e-10 | -0.000 |
models.itu676.gamma0_exact | 320.0 | 1013.25 | 7.5 | 288.15 | 0.029158 | 0.029158 | 1.76e-10 | 0.000 |
models.itu676.gamma0_exact | 321.0 | 1013.25 | 7.5 | 288.15 | 0.029342 | 0.029342 | -2.26e-10 | -0.000 |
models.itu676.gamma0_exact | 322.0 | 1013.25 | 7.5 | 288.15 | 0.029528 | 0.029528 | -3.42e-10 | -0.000 |
models.itu676.gamma0_exact | 323.0 | 1013.25 | 7.5 | 288.15 | 0.029716 | 0.029716 | 9.63e-11 | 0.000 |
models.itu676.gamma0_exact | 324.0 | 1013.25 | 7.5 | 288.15 | 0.029907 | 0.029907 | 3.89e-10 | 0.000 |
models.itu676.gamma0_exact | 325.0 | 1013.25 | 7.5 | 288.15 | 0.030099 | 0.030099 | 4.06e-10 | 0.000 |
models.itu676.gamma0_exact | 326.0 | 1013.25 | 7.5 | 288.15 | 0.030294 | 0.030294 | -1.14e-10 | -0.000 |
models.itu676.gamma0_exact | 327.0 | 1013.25 | 7.5 | 288.15 | 0.030491 | 0.030491 | 4.47e-10 | 0.000 |
models.itu676.gamma0_exact | 328.0 | 1013.25 | 7.5 | 288.15 | 0.030691 | 0.030691 | 2.57e-10 | 0.000 |
models.itu676.gamma0_exact | 329.0 | 1013.25 | 7.5 | 288.15 | 0.030893 | 0.030893 | 2.97e-10 | 0.000 |
models.itu676.gamma0_exact | 330.0 | 1013.25 | 7.5 | 288.15 | 0.031099 | 0.031099 | 1.19e-10 | 0.000 |
models.itu676.gamma0_exact | 331.0 | 1013.25 | 7.5 | 288.15 | 0.031308 | 0.031308 | 4.33e-12 | 0.000 |
models.itu676.gamma0_exact | 332.0 | 1013.25 | 7.5 | 288.15 | 0.031521 | 0.031521 | 3.89e-10 | 0.000 |
models.itu676.gamma0_exact | 333.0 | 1013.25 | 7.5 | 288.15 | 0.031738 | 0.031738 | 3.79e-10 | 0.000 |
models.itu676.gamma0_exact | 334.0 | 1013.25 | 7.5 | 288.15 | 0.031958 | 0.031958 | 1.55e-10 | 0.000 |
models.itu676.gamma0_exact | 335.0 | 1013.25 | 7.5 | 288.15 | 0.032184 | 0.032184 | -1.20e-11 | -0.000 |
models.itu676.gamma0_exact | 336.0 | 1013.25 | 7.5 | 288.15 | 0.032415 | 0.032415 | -4.58e-10 | -0.000 |
models.itu676.gamma0_exact | 337.0 | 1013.25 | 7.5 | 288.15 | 0.032652 | 0.032652 | -6.69e-12 | -0.000 |
models.itu676.gamma0_exact | 338.0 | 1013.25 | 7.5 | 288.15 | 0.032895 | 0.032895 | 4.23e-10 | 0.000 |
models.itu676.gamma0_exact | 339.0 | 1013.25 | 7.5 | 288.15 | 0.033145 | 0.033145 | -2.88e-10 | -0.000 |
models.itu676.gamma0_exact | 340.0 | 1013.25 | 7.5 | 288.15 | 0.033403 | 0.033403 | -3.78e-11 | -0.000 |
models.itu676.gamma0_exact | 341.0 | 1013.25 | 7.5 | 288.15 | 0.033670 | 0.033670 | 1.26e-10 | 0.000 |
models.itu676.gamma0_exact | 342.0 | 1013.25 | 7.5 | 288.15 | 0.033948 | 0.033948 | 8.57e-11 | 0.000 |
models.itu676.gamma0_exact | 343.0 | 1013.25 | 7.5 | 288.15 | 0.034237 | 0.034237 | -2.13e-10 | -0.000 |
models.itu676.gamma0_exact | 344.0 | 1013.25 | 7.5 | 288.15 | 0.034540 | 0.034540 | 1.61e-10 | 0.000 |
models.itu676.gamma0_exact | 345.0 | 1013.25 | 7.5 | 288.15 | 0.034859 | 0.034859 | 2.94e-10 | 0.000 |
models.itu676.gamma0_exact | 346.0 | 1013.25 | 7.5 | 288.15 | 0.035196 | 0.035196 | 4.89e-10 | 0.000 |
models.itu676.gamma0_exact | 347.0 | 1013.25 | 7.5 | 288.15 | 0.035555 | 0.035555 | 1.91e-10 | 0.000 |
models.itu676.gamma0_exact | 348.0 | 1013.25 | 7.5 | 288.15 | 0.035939 | 0.035939 | -2.64e-10 | -0.000 |
models.itu676.gamma0_exact | 349.0 | 1013.25 | 7.5 | 288.15 | 0.036354 | 0.036354 | -8.97e-11 | -0.000 |
models.itu676.gamma0_exact | 350.0 | 1013.25 | 7.5 | 288.15 | 0.036806 | 0.036806 | -5.05e-11 | -0.000 |
Function gammaw_exact¶
The table below contains the results of testing function gammaw_exact
.
The test cases were extracted from spreadsheet ITURP676-12_gamma.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
f = 12.0 # (GHz)
P = 1013.25 # (hPA)
rho = 7.5 # (g/cm3)
T = 288.15 # (K)
# Make call to test-function gammaw_exact
itur_val = itur.models.itu676.gammaw_exact(f=f, P=P, rho=rho, T=T)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.009535388 # (dB/km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | f (GHz) | P (hPA) | rho (g/cm3) | T (K) | ITU Validation (dB/km) | ITU-Rpy Result (dB/km) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|
models.itu676.gammaw_exact | 12.0 | 1013.25 | 7.5 | 288.15 | 0.009535 | 0.009535 | -2.20e-10 | -0.000 |
models.itu676.gammaw_exact | 20.0 | 1013.25 | 7.5 | 288.15 | 0.097047 | 0.097047 | 1.85e-10 | 0.000 |
models.itu676.gammaw_exact | 60.0 | 1013.25 | 7.5 | 288.15 | 0.154842 | 0.154842 | 3.64e-10 | 0.000 |
models.itu676.gammaw_exact | 90.0 | 1013.25 | 7.5 | 288.15 | 0.341973 | 0.341973 | -4.22e-10 | -0.000 |
models.itu676.gammaw_exact | 130.0 | 1013.25 | 7.5 | 288.15 | 0.751845 | 0.751845 | 3.54e-10 | 0.000 |
models.itu676.gammaw_exact | 1.0 | 1013.25 | 7.5 | 288.15 | 0.000051 | 0.000051 | -4.62e-09 | -0.009 |
models.itu676.gammaw_exact | 2.0 | 1013.25 | 7.5 | 288.15 | 0.000204 | 0.000204 | -3.79e-10 | -0.000 |
models.itu676.gammaw_exact | 3.0 | 1013.25 | 7.5 | 288.15 | 0.000463 | 0.000463 | 1.44e-10 | 0.000 |
models.itu676.gammaw_exact | 4.0 | 1013.25 | 7.5 | 288.15 | 0.000830 | 0.000830 | 7.72e-11 | 0.000 |
models.itu676.gammaw_exact | 5.0 | 1013.25 | 7.5 | 288.15 | 0.001313 | 0.001313 | 7.88e-11 | 0.000 |
models.itu676.gammaw_exact | 6.0 | 1013.25 | 7.5 | 288.15 | 0.001922 | 0.001922 | 1.96e-10 | 0.000 |
models.itu676.gammaw_exact | 7.0 | 1013.25 | 7.5 | 288.15 | 0.002668 | 0.002668 | -4.93e-10 | -0.000 |
models.itu676.gammaw_exact | 8.0 | 1013.25 | 7.5 | 288.15 | 0.003572 | 0.003572 | -4.72e-11 | -0.000 |
models.itu676.gammaw_exact | 9.0 | 1013.25 | 7.5 | 288.15 | 0.004661 | 0.004661 | 2.64e-10 | 0.000 |
models.itu676.gammaw_exact | 10.0 | 1013.25 | 7.5 | 288.15 | 0.005974 | 0.005974 | -2.45e-10 | -0.000 |
models.itu676.gammaw_exact | 11.0 | 1013.25 | 7.5 | 288.15 | 0.007570 | 0.007570 | 2.70e-10 | 0.000 |
models.itu676.gammaw_exact | 12.0 | 1013.25 | 7.5 | 288.15 | 0.009535 | 0.009535 | -2.20e-10 | -0.000 |
models.itu676.gammaw_exact | 13.0 | 1013.25 | 7.5 | 288.15 | 0.012005 | 0.012005 | -2.26e-10 | -0.000 |
models.itu676.gammaw_exact | 14.0 | 1013.25 | 7.5 | 288.15 | 0.015192 | 0.015192 | 4.73e-10 | 0.000 |
models.itu676.gammaw_exact | 15.0 | 1013.25 | 7.5 | 288.15 | 0.019439 | 0.019439 | 2.42e-10 | 0.000 |
models.itu676.gammaw_exact | 16.0 | 1013.25 | 7.5 | 288.15 | 0.025325 | 0.025325 | -4.09e-11 | -0.000 |
models.itu676.gammaw_exact | 17.0 | 1013.25 | 7.5 | 288.15 | 0.033835 | 0.033835 | -4.35e-10 | -0.000 |
models.itu676.gammaw_exact | 18.0 | 1013.25 | 7.5 | 288.15 | 0.046664 | 0.046664 | 4.61e-10 | 0.000 |
models.itu676.gammaw_exact | 19.0 | 1013.25 | 7.5 | 288.15 | 0.066575 | 0.066575 | 2.14e-10 | 0.000 |
models.itu676.gammaw_exact | 20.0 | 1013.25 | 7.5 | 288.15 | 0.097047 | 0.097047 | 1.85e-10 | 0.000 |
models.itu676.gammaw_exact | 21.0 | 1013.25 | 7.5 | 288.15 | 0.137954 | 0.137954 | 6.13e-11 | 0.000 |
models.itu676.gammaw_exact | 22.0 | 1013.25 | 7.5 | 288.15 | 0.174207 | 0.174207 | -3.37e-10 | -0.000 |
models.itu676.gammaw_exact | 23.0 | 1013.25 | 7.5 | 288.15 | 0.180442 | 0.180442 | -9.96e-11 | -0.000 |
models.itu676.gammaw_exact | 24.0 | 1013.25 | 7.5 | 288.15 | 0.158525 | 0.158525 | -3.25e-10 | -0.000 |
models.itu676.gammaw_exact | 25.0 | 1013.25 | 7.5 | 288.15 | 0.130730 | 0.130730 | 2.96e-11 | 0.000 |
models.itu676.gammaw_exact | 26.0 | 1013.25 | 7.5 | 288.15 | 0.108565 | 0.108565 | -2.54e-10 | -0.000 |
models.itu676.gammaw_exact | 27.0 | 1013.25 | 7.5 | 288.15 | 0.093212 | 0.093212 | 1.43e-10 | 0.000 |
models.itu676.gammaw_exact | 28.0 | 1013.25 | 7.5 | 288.15 | 0.083060 | 0.083060 | -2.54e-10 | -0.000 |
models.itu676.gammaw_exact | 29.0 | 1013.25 | 7.5 | 288.15 | 0.076494 | 0.076494 | 4.35e-10 | 0.000 |
models.itu676.gammaw_exact | 30.0 | 1013.25 | 7.5 | 288.15 | 0.072375 | 0.072375 | -2.52e-11 | -0.000 |
models.itu676.gammaw_exact | 31.0 | 1013.25 | 7.5 | 288.15 | 0.069951 | 0.069951 | -3.56e-10 | -0.000 |
models.itu676.gammaw_exact | 32.0 | 1013.25 | 7.5 | 288.15 | 0.068735 | 0.068735 | -1.86e-11 | -0.000 |
models.itu676.gammaw_exact | 33.0 | 1013.25 | 7.5 | 288.15 | 0.068407 | 0.068407 | 2.34e-10 | 0.000 |
models.itu676.gammaw_exact | 34.0 | 1013.25 | 7.5 | 288.15 | 0.068749 | 0.068749 | -2.64e-10 | -0.000 |
models.itu676.gammaw_exact | 35.0 | 1013.25 | 7.5 | 288.15 | 0.069614 | 0.069614 | 3.75e-10 | 0.000 |
models.itu676.gammaw_exact | 36.0 | 1013.25 | 7.5 | 288.15 | 0.070897 | 0.070897 | 4.40e-10 | 0.000 |
models.itu676.gammaw_exact | 37.0 | 1013.25 | 7.5 | 288.15 | 0.072522 | 0.072522 | -4.26e-10 | -0.000 |
models.itu676.gammaw_exact | 38.0 | 1013.25 | 7.5 | 288.15 | 0.074435 | 0.074435 | -3.44e-10 | -0.000 |
models.itu676.gammaw_exact | 39.0 | 1013.25 | 7.5 | 288.15 | 0.076594 | 0.076594 | 1.88e-10 | 0.000 |
models.itu676.gammaw_exact | 40.0 | 1013.25 | 7.5 | 288.15 | 0.078969 | 0.078969 | 2.16e-10 | 0.000 |
models.itu676.gammaw_exact | 41.0 | 1013.25 | 7.5 | 288.15 | 0.081535 | 0.081535 | 3.69e-10 | 0.000 |
models.itu676.gammaw_exact | 42.0 | 1013.25 | 7.5 | 288.15 | 0.084275 | 0.084275 | -4.94e-10 | -0.000 |
models.itu676.gammaw_exact | 43.0 | 1013.25 | 7.5 | 288.15 | 0.087173 | 0.087173 | 4.52e-10 | 0.000 |
models.itu676.gammaw_exact | 44.0 | 1013.25 | 7.5 | 288.15 | 0.090218 | 0.090218 | 7.22e-11 | 0.000 |
models.itu676.gammaw_exact | 45.0 | 1013.25 | 7.5 | 288.15 | 0.093400 | 0.093400 | -4.64e-10 | -0.000 |
models.itu676.gammaw_exact | 46.0 | 1013.25 | 7.5 | 288.15 | 0.096713 | 0.096713 | -4.14e-10 | -0.000 |
models.itu676.gammaw_exact | 47.0 | 1013.25 | 7.5 | 288.15 | 0.100150 | 0.100150 | -1.40e-10 | -0.000 |
models.itu676.gammaw_exact | 48.0 | 1013.25 | 7.5 | 288.15 | 0.103705 | 0.103705 | 3.53e-10 | 0.000 |
models.itu676.gammaw_exact | 49.0 | 1013.25 | 7.5 | 288.15 | 0.107376 | 0.107376 | -2.13e-10 | -0.000 |
models.itu676.gammaw_exact | 50.0 | 1013.25 | 7.5 | 288.15 | 0.111159 | 0.111159 | -2.70e-10 | -0.000 |
models.itu676.gammaw_exact | 51.0 | 1013.25 | 7.5 | 288.15 | 0.115050 | 0.115050 | -3.23e-10 | -0.000 |
models.itu676.gammaw_exact | 52.0 | 1013.25 | 7.5 | 288.15 | 0.119049 | 0.119049 | -1.74e-10 | -0.000 |
models.itu676.gammaw_exact | 53.0 | 1013.25 | 7.5 | 288.15 | 0.123153 | 0.123153 | 4.02e-10 | 0.000 |
models.itu676.gammaw_exact | 54.0 | 1013.25 | 7.5 | 288.15 | 0.127362 | 0.127362 | 2.51e-10 | 0.000 |
models.itu676.gammaw_exact | 55.0 | 1013.25 | 7.5 | 288.15 | 0.131674 | 0.131674 | 3.02e-10 | 0.000 |
models.itu676.gammaw_exact | 56.0 | 1013.25 | 7.5 | 288.15 | 0.136092 | 0.136092 | -1.08e-10 | -0.000 |
models.itu676.gammaw_exact | 57.0 | 1013.25 | 7.5 | 288.15 | 0.140614 | 0.140614 | -2.54e-10 | -0.000 |
models.itu676.gammaw_exact | 58.0 | 1013.25 | 7.5 | 288.15 | 0.145243 | 0.145243 | -4.27e-10 | -0.000 |
models.itu676.gammaw_exact | 59.0 | 1013.25 | 7.5 | 288.15 | 0.149984 | 0.149984 | -6.93e-11 | -0.000 |
models.itu676.gammaw_exact | 60.0 | 1013.25 | 7.5 | 288.15 | 0.154842 | 0.154842 | 3.64e-10 | 0.000 |
models.itu676.gammaw_exact | 61.0 | 1013.25 | 7.5 | 288.15 | 0.159827 | 0.159827 | -3.12e-10 | -0.000 |
models.itu676.gammaw_exact | 62.0 | 1013.25 | 7.5 | 288.15 | 0.164956 | 0.164956 | -1.69e-10 | -0.000 |
models.itu676.gammaw_exact | 63.0 | 1013.25 | 7.5 | 288.15 | 0.170255 | 0.170255 | 4.55e-10 | 0.000 |
models.itu676.gammaw_exact | 64.0 | 1013.25 | 7.5 | 288.15 | 0.175765 | 0.175765 | 4.22e-10 | 0.000 |
models.itu676.gammaw_exact | 65.0 | 1013.25 | 7.5 | 288.15 | 0.181535 | 0.181535 | 2.23e-10 | 0.000 |
models.itu676.gammaw_exact | 66.0 | 1013.25 | 7.5 | 288.15 | 0.187578 | 0.187578 | -1.55e-10 | -0.000 |
models.itu676.gammaw_exact | 67.0 | 1013.25 | 7.5 | 288.15 | 0.193727 | 0.193727 | -4.67e-10 | -0.000 |
models.itu676.gammaw_exact | 68.0 | 1013.25 | 7.5 | 288.15 | 0.199555 | 0.199555 | -2.42e-10 | -0.000 |
models.itu676.gammaw_exact | 69.0 | 1013.25 | 7.5 | 288.15 | 0.204833 | 0.204833 | -2.56e-10 | -0.000 |
models.itu676.gammaw_exact | 70.0 | 1013.25 | 7.5 | 288.15 | 0.209888 | 0.209888 | -3.64e-10 | -0.000 |
models.itu676.gammaw_exact | 71.0 | 1013.25 | 7.5 | 288.15 | 0.215079 | 0.215079 | -3.48e-10 | -0.000 |
models.itu676.gammaw_exact | 72.0 | 1013.25 | 7.5 | 288.15 | 0.220517 | 0.220517 | -7.24e-11 | -0.000 |
models.itu676.gammaw_exact | 73.0 | 1013.25 | 7.5 | 288.15 | 0.226186 | 0.226186 | -4.90e-10 | -0.000 |
models.itu676.gammaw_exact | 74.0 | 1013.25 | 7.5 | 288.15 | 0.232047 | 0.232047 | 7.45e-11 | 0.000 |
models.itu676.gammaw_exact | 75.0 | 1013.25 | 7.5 | 288.15 | 0.238069 | 0.238069 | 7.76e-11 | 0.000 |
models.itu676.gammaw_exact | 76.0 | 1013.25 | 7.5 | 288.15 | 0.244231 | 0.244231 | -7.08e-11 | -0.000 |
models.itu676.gammaw_exact | 77.0 | 1013.25 | 7.5 | 288.15 | 0.250518 | 0.250518 | 3.58e-10 | 0.000 |
models.itu676.gammaw_exact | 78.0 | 1013.25 | 7.5 | 288.15 | 0.256922 | 0.256922 | -6.14e-12 | -0.000 |
models.itu676.gammaw_exact | 79.0 | 1013.25 | 7.5 | 288.15 | 0.263437 | 0.263437 | 2.05e-10 | 0.000 |
models.itu676.gammaw_exact | 80.0 | 1013.25 | 7.5 | 288.15 | 0.270060 | 0.270060 | 4.24e-10 | 0.000 |
models.itu676.gammaw_exact | 81.0 | 1013.25 | 7.5 | 288.15 | 0.276788 | 0.276788 | 1.85e-10 | 0.000 |
models.itu676.gammaw_exact | 82.0 | 1013.25 | 7.5 | 288.15 | 0.283621 | 0.283621 | -4.21e-10 | -0.000 |
models.itu676.gammaw_exact | 83.0 | 1013.25 | 7.5 | 288.15 | 0.290556 | 0.290556 | -2.26e-10 | -0.000 |
models.itu676.gammaw_exact | 84.0 | 1013.25 | 7.5 | 288.15 | 0.297593 | 0.297593 | 2.57e-10 | 0.000 |
models.itu676.gammaw_exact | 85.0 | 1013.25 | 7.5 | 288.15 | 0.304733 | 0.304733 | 1.28e-10 | 0.000 |
models.itu676.gammaw_exact | 86.0 | 1013.25 | 7.5 | 288.15 | 0.311975 | 0.311975 | -1.26e-10 | -0.000 |
models.itu676.gammaw_exact | 87.0 | 1013.25 | 7.5 | 288.15 | 0.319320 | 0.319320 | 2.86e-10 | 0.000 |
models.itu676.gammaw_exact | 88.0 | 1013.25 | 7.5 | 288.15 | 0.326767 | 0.326767 | 4.60e-12 | 0.000 |
models.itu676.gammaw_exact | 89.0 | 1013.25 | 7.5 | 288.15 | 0.334318 | 0.334318 | 2.17e-11 | 0.000 |
models.itu676.gammaw_exact | 90.0 | 1013.25 | 7.5 | 288.15 | 0.341973 | 0.341973 | -4.22e-10 | -0.000 |
models.itu676.gammaw_exact | 91.0 | 1013.25 | 7.5 | 288.15 | 0.349733 | 0.349733 | -3.33e-10 | -0.000 |
models.itu676.gammaw_exact | 92.0 | 1013.25 | 7.5 | 288.15 | 0.357598 | 0.357598 | -3.94e-10 | -0.000 |
models.itu676.gammaw_exact | 93.0 | 1013.25 | 7.5 | 288.15 | 0.365570 | 0.365570 | -3.87e-10 | -0.000 |
models.itu676.gammaw_exact | 94.0 | 1013.25 | 7.5 | 288.15 | 0.373648 | 0.373648 | 1.10e-11 | 0.000 |
models.itu676.gammaw_exact | 95.0 | 1013.25 | 7.5 | 288.15 | 0.381835 | 0.381835 | 4.09e-10 | 0.000 |
models.itu676.gammaw_exact | 96.0 | 1013.25 | 7.5 | 288.15 | 0.390131 | 0.390131 | 5.12e-11 | 0.000 |
models.itu676.gammaw_exact | 97.0 | 1013.25 | 7.5 | 288.15 | 0.398538 | 0.398538 | 3.53e-10 | 0.000 |
models.itu676.gammaw_exact | 98.0 | 1013.25 | 7.5 | 288.15 | 0.407056 | 0.407056 | 4.96e-10 | 0.000 |
models.itu676.gammaw_exact | 99.0 | 1013.25 | 7.5 | 288.15 | 0.415687 | 0.415687 | -2.06e-10 | -0.000 |
models.itu676.gammaw_exact | 100.0 | 1013.25 | 7.5 | 288.15 | 0.424434 | 0.424434 | 3.27e-10 | 0.000 |
models.itu676.gammaw_exact | 101.0 | 1013.25 | 7.5 | 288.15 | 0.433296 | 0.433296 | 6.22e-11 | 0.000 |
models.itu676.gammaw_exact | 102.0 | 1013.25 | 7.5 | 288.15 | 0.442276 | 0.442276 | 2.72e-10 | 0.000 |
models.itu676.gammaw_exact | 103.0 | 1013.25 | 7.5 | 288.15 | 0.451376 | 0.451376 | 4.62e-10 | 0.000 |
models.itu676.gammaw_exact | 104.0 | 1013.25 | 7.5 | 288.15 | 0.460599 | 0.460599 | 5.67e-11 | 0.000 |
models.itu676.gammaw_exact | 105.0 | 1013.25 | 7.5 | 288.15 | 0.469945 | 0.469945 | -3.83e-10 | -0.000 |
models.itu676.gammaw_exact | 106.0 | 1013.25 | 7.5 | 288.15 | 0.479419 | 0.479419 | -5.01e-11 | -0.000 |
models.itu676.gammaw_exact | 107.0 | 1013.25 | 7.5 | 288.15 | 0.489024 | 0.489024 | 4.91e-10 | 0.000 |
models.itu676.gammaw_exact | 108.0 | 1013.25 | 7.5 | 288.15 | 0.498762 | 0.498762 | -3.38e-10 | -0.000 |
models.itu676.gammaw_exact | 109.0 | 1013.25 | 7.5 | 288.15 | 0.508640 | 0.508640 | -4.67e-10 | -0.000 |
models.itu676.gammaw_exact | 110.0 | 1013.25 | 7.5 | 288.15 | 0.518661 | 0.518661 | 4.78e-10 | 0.000 |
models.itu676.gammaw_exact | 111.0 | 1013.25 | 7.5 | 288.15 | 0.528835 | 0.528835 | -2.82e-10 | -0.000 |
models.itu676.gammaw_exact | 112.0 | 1013.25 | 7.5 | 288.15 | 0.539170 | 0.539170 | 4.53e-11 | 0.000 |
models.itu676.gammaw_exact | 113.0 | 1013.25 | 7.5 | 288.15 | 0.549681 | 0.549681 | 1.80e-10 | 0.000 |
models.itu676.gammaw_exact | 114.0 | 1013.25 | 7.5 | 288.15 | 0.560388 | 0.560388 | 2.29e-10 | 0.000 |
models.itu676.gammaw_exact | 115.0 | 1013.25 | 7.5 | 288.15 | 0.571322 | 0.571322 | 4.10e-10 | 0.000 |
models.itu676.gammaw_exact | 116.0 | 1013.25 | 7.5 | 288.15 | 0.582526 | 0.582526 | -3.57e-10 | -0.000 |
models.itu676.gammaw_exact | 117.0 | 1013.25 | 7.5 | 288.15 | 0.594053 | 0.594053 | -2.83e-11 | -0.000 |
models.itu676.gammaw_exact | 118.0 | 1013.25 | 7.5 | 288.15 | 0.605922 | 0.605922 | 4.06e-10 | 0.000 |
models.itu676.gammaw_exact | 119.0 | 1013.25 | 7.5 | 288.15 | 0.617993 | 0.617993 | 5.33e-11 | 0.000 |
models.itu676.gammaw_exact | 120.0 | 1013.25 | 7.5 | 288.15 | 0.629861 | 0.629861 | 7.98e-11 | 0.000 |
models.itu676.gammaw_exact | 121.0 | 1013.25 | 7.5 | 288.15 | 0.641222 | 0.641222 | -3.07e-10 | -0.000 |
models.itu676.gammaw_exact | 122.0 | 1013.25 | 7.5 | 288.15 | 0.652345 | 0.652345 | 6.55e-11 | 0.000 |
models.itu676.gammaw_exact | 123.0 | 1013.25 | 7.5 | 288.15 | 0.663647 | 0.663647 | 1.99e-10 | 0.000 |
models.itu676.gammaw_exact | 124.0 | 1013.25 | 7.5 | 288.15 | 0.675301 | 0.675301 | -3.65e-10 | -0.000 |
models.itu676.gammaw_exact | 125.0 | 1013.25 | 7.5 | 288.15 | 0.687313 | 0.687313 | -4.22e-10 | -0.000 |
models.itu676.gammaw_exact | 126.0 | 1013.25 | 7.5 | 288.15 | 0.699649 | 0.699649 | -3.95e-10 | -0.000 |
models.itu676.gammaw_exact | 127.0 | 1013.25 | 7.5 | 288.15 | 0.712282 | 0.712282 | 4.27e-10 | 0.000 |
models.itu676.gammaw_exact | 128.0 | 1013.25 | 7.5 | 288.15 | 0.725196 | 0.725196 | 3.58e-10 | 0.000 |
models.itu676.gammaw_exact | 129.0 | 1013.25 | 7.5 | 288.15 | 0.738383 | 0.738383 | 1.72e-10 | 0.000 |
models.itu676.gammaw_exact | 130.0 | 1013.25 | 7.5 | 288.15 | 0.751845 | 0.751845 | 3.54e-10 | 0.000 |
models.itu676.gammaw_exact | 131.0 | 1013.25 | 7.5 | 288.15 | 0.765585 | 0.765585 | 2.65e-10 | 0.000 |
models.itu676.gammaw_exact | 132.0 | 1013.25 | 7.5 | 288.15 | 0.779613 | 0.779613 | 1.24e-10 | 0.000 |
models.itu676.gammaw_exact | 133.0 | 1013.25 | 7.5 | 288.15 | 0.793940 | 0.793940 | -4.15e-10 | -0.000 |
models.itu676.gammaw_exact | 134.0 | 1013.25 | 7.5 | 288.15 | 0.808581 | 0.808581 | 3.94e-10 | 0.000 |
models.itu676.gammaw_exact | 135.0 | 1013.25 | 7.5 | 288.15 | 0.823553 | 0.823553 | -2.68e-10 | -0.000 |
models.itu676.gammaw_exact | 136.0 | 1013.25 | 7.5 | 288.15 | 0.838874 | 0.838874 | -1.93e-10 | -0.000 |
models.itu676.gammaw_exact | 137.0 | 1013.25 | 7.5 | 288.15 | 0.854566 | 0.854566 | -2.96e-10 | -0.000 |
models.itu676.gammaw_exact | 138.0 | 1013.25 | 7.5 | 288.15 | 0.870653 | 0.870653 | 1.26e-10 | 0.000 |
models.itu676.gammaw_exact | 139.0 | 1013.25 | 7.5 | 288.15 | 0.887164 | 0.887164 | -4.46e-10 | -0.000 |
models.itu676.gammaw_exact | 140.0 | 1013.25 | 7.5 | 288.15 | 0.904129 | 0.904129 | 3.74e-10 | 0.000 |
models.itu676.gammaw_exact | 141.0 | 1013.25 | 7.5 | 288.15 | 0.921583 | 0.921583 | -2.84e-10 | -0.000 |
models.itu676.gammaw_exact | 142.0 | 1013.25 | 7.5 | 288.15 | 0.939565 | 0.939565 | -1.83e-11 | -0.000 |
models.itu676.gammaw_exact | 143.0 | 1013.25 | 7.5 | 288.15 | 0.958119 | 0.958119 | -3.78e-10 | -0.000 |
models.itu676.gammaw_exact | 144.0 | 1013.25 | 7.5 | 288.15 | 0.977295 | 0.977295 | 4.40e-11 | 0.000 |
models.itu676.gammaw_exact | 145.0 | 1013.25 | 7.5 | 288.15 | 0.997150 | 0.997150 | 2.56e-10 | 0.000 |
models.itu676.gammaw_exact | 146.0 | 1013.25 | 7.5 | 288.15 | 1.017749 | 1.017749 | -4.84e-10 | -0.000 |
models.itu676.gammaw_exact | 147.0 | 1013.25 | 7.5 | 288.15 | 1.039164 | 1.039164 | 4.42e-10 | 0.000 |
models.itu676.gammaw_exact | 148.0 | 1013.25 | 7.5 | 288.15 | 1.061480 | 1.061480 | 1.75e-10 | 0.000 |
models.itu676.gammaw_exact | 149.0 | 1013.25 | 7.5 | 288.15 | 1.084794 | 1.084794 | -4.40e-10 | -0.000 |
models.itu676.gammaw_exact | 150.0 | 1013.25 | 7.5 | 288.15 | 1.109218 | 1.109218 | 7.61e-11 | 0.000 |
models.itu676.gammaw_exact | 151.0 | 1013.25 | 7.5 | 288.15 | 1.134879 | 1.134879 | -1.31e-11 | -0.000 |
models.itu676.gammaw_exact | 152.0 | 1013.25 | 7.5 | 288.15 | 1.161928 | 1.161928 | 3.59e-10 | 0.000 |
models.itu676.gammaw_exact | 153.0 | 1013.25 | 7.5 | 288.15 | 1.190540 | 1.190540 | -2.91e-10 | -0.000 |
models.itu676.gammaw_exact | 154.0 | 1013.25 | 7.5 | 288.15 | 1.220920 | 1.220920 | -2.04e-10 | -0.000 |
models.itu676.gammaw_exact | 155.0 | 1013.25 | 7.5 | 288.15 | 1.253309 | 1.253309 | -1.63e-10 | -0.000 |
models.itu676.gammaw_exact | 156.0 | 1013.25 | 7.5 | 288.15 | 1.287995 | 1.287995 | 4.17e-10 | 0.000 |
models.itu676.gammaw_exact | 157.0 | 1013.25 | 7.5 | 288.15 | 1.325319 | 1.325319 | 7.23e-11 | 0.000 |
models.itu676.gammaw_exact | 158.0 | 1013.25 | 7.5 | 288.15 | 1.365690 | 1.365690 | -1.20e-10 | -0.000 |
models.itu676.gammaw_exact | 159.0 | 1013.25 | 7.5 | 288.15 | 1.409602 | 1.409602 | -2.34e-10 | -0.000 |
models.itu676.gammaw_exact | 160.0 | 1013.25 | 7.5 | 288.15 | 1.457655 | 1.457655 | 1.63e-11 | 0.000 |
models.itu676.gammaw_exact | 161.0 | 1013.25 | 7.5 | 288.15 | 1.510584 | 1.510584 | 1.88e-10 | 0.000 |
models.itu676.gammaw_exact | 162.0 | 1013.25 | 7.5 | 288.15 | 1.569294 | 1.569294 | -4.93e-10 | -0.000 |
models.itu676.gammaw_exact | 163.0 | 1013.25 | 7.5 | 288.15 | 1.634915 | 1.634915 | 1.21e-11 | 0.000 |
models.itu676.gammaw_exact | 164.0 | 1013.25 | 7.5 | 288.15 | 1.708862 | 1.708862 | 2.32e-10 | 0.000 |
models.itu676.gammaw_exact | 165.0 | 1013.25 | 7.5 | 288.15 | 1.792933 | 1.792933 | -5.35e-11 | -0.000 |
models.itu676.gammaw_exact | 166.0 | 1013.25 | 7.5 | 288.15 | 1.889435 | 1.889435 | -1.80e-10 | -0.000 |
models.itu676.gammaw_exact | 167.0 | 1013.25 | 7.5 | 288.15 | 2.001362 | 2.001362 | -7.31e-11 | -0.000 |
models.itu676.gammaw_exact | 168.0 | 1013.25 | 7.5 | 288.15 | 2.132651 | 2.132651 | -4.20e-10 | -0.000 |
models.itu676.gammaw_exact | 169.0 | 1013.25 | 7.5 | 288.15 | 2.288555 | 2.288555 | -2.68e-10 | -0.000 |
models.itu676.gammaw_exact | 170.0 | 1013.25 | 7.5 | 288.15 | 2.476195 | 2.476195 | 6.14e-11 | 0.000 |
models.itu676.gammaw_exact | 171.0 | 1013.25 | 7.5 | 288.15 | 2.705381 | 2.705381 | -3.20e-10 | -0.000 |
models.itu676.gammaw_exact | 172.0 | 1013.25 | 7.5 | 288.15 | 2.989890 | 2.989890 | 4.12e-10 | 0.000 |
models.itu676.gammaw_exact | 173.0 | 1013.25 | 7.5 | 288.15 | 3.349462 | 3.349462 | 2.25e-10 | 0.000 |
models.itu676.gammaw_exact | 174.0 | 1013.25 | 7.5 | 288.15 | 3.812987 | 3.812987 | 4.21e-10 | 0.000 |
models.itu676.gammaw_exact | 175.0 | 1013.25 | 7.5 | 288.15 | 4.423707 | 4.423707 | 8.91e-11 | 0.000 |
models.itu676.gammaw_exact | 176.0 | 1013.25 | 7.5 | 288.15 | 5.247745 | 5.247745 | 4.84e-10 | 0.000 |
models.itu676.gammaw_exact | 177.0 | 1013.25 | 7.5 | 288.15 | 6.387977 | 6.387977 | -2.37e-10 | -0.000 |
models.itu676.gammaw_exact | 178.0 | 1013.25 | 7.5 | 288.15 | 8.005218 | 8.005218 | -1.66e-10 | -0.000 |
models.itu676.gammaw_exact | 179.0 | 1013.25 | 7.5 | 288.15 | 10.343578 | 10.343578 | 5.71e-11 | 0.000 |
models.itu676.gammaw_exact | 180.0 | 1013.25 | 7.5 | 288.15 | 13.728458 | 13.728458 | -4.43e-09 | -0.000 |
models.itu676.gammaw_exact | 181.0 | 1013.25 | 7.5 | 288.15 | 18.399102 | 18.399102 | -5.25e-10 | -0.000 |
models.itu676.gammaw_exact | 182.0 | 1013.25 | 7.5 | 288.15 | 23.830459 | 23.830459 | 2.78e-09 | 0.000 |
models.itu676.gammaw_exact | 183.0 | 1013.25 | 7.5 | 288.15 | 27.665008 | 27.665008 | -4.17e-09 | -0.000 |
models.itu676.gammaw_exact | 184.0 | 1013.25 | 7.5 | 288.15 | 27.024838 | 27.024838 | -4.47e-09 | -0.000 |
models.itu676.gammaw_exact | 185.0 | 1013.25 | 7.5 | 288.15 | 22.603713 | 22.603713 | 2.25e-09 | 0.000 |
models.itu676.gammaw_exact | 186.0 | 1013.25 | 7.5 | 288.15 | 17.480866 | 17.480866 | 2.32e-09 | 0.000 |
models.itu676.gammaw_exact | 187.0 | 1013.25 | 7.5 | 288.15 | 13.340008 | 13.340008 | 3.99e-09 | 0.000 |
models.itu676.gammaw_exact | 188.0 | 1013.25 | 7.5 | 288.15 | 10.372561 | 10.372561 | -5.48e-11 | -0.000 |
models.itu676.gammaw_exact | 189.0 | 1013.25 | 7.5 | 288.15 | 8.306314 | 8.306314 | 2.15e-10 | 0.000 |
models.itu676.gammaw_exact | 190.0 | 1013.25 | 7.5 | 288.15 | 6.858142 | 6.858142 | -3.79e-10 | -0.000 |
models.itu676.gammaw_exact | 191.0 | 1013.25 | 7.5 | 288.15 | 5.823870 | 5.823870 | -2.31e-10 | -0.000 |
models.itu676.gammaw_exact | 192.0 | 1013.25 | 7.5 | 288.15 | 5.068900 | 5.068900 | -3.02e-11 | -0.000 |
models.itu676.gammaw_exact | 193.0 | 1013.25 | 7.5 | 288.15 | 4.506007 | 4.506007 | -1.51e-10 | -0.000 |
models.itu676.gammaw_exact | 194.0 | 1013.25 | 7.5 | 288.15 | 4.078184 | 4.078184 | -8.23e-11 | -0.000 |
models.itu676.gammaw_exact | 195.0 | 1013.25 | 7.5 | 288.15 | 3.747495 | 3.747495 | -4.54e-10 | -0.000 |
models.itu676.gammaw_exact | 196.0 | 1013.25 | 7.5 | 288.15 | 3.488154 | 3.488154 | -4.79e-10 | -0.000 |
models.itu676.gammaw_exact | 197.0 | 1013.25 | 7.5 | 288.15 | 3.282257 | 3.282257 | 4.74e-10 | 0.000 |
models.itu676.gammaw_exact | 198.0 | 1013.25 | 7.5 | 288.15 | 3.117111 | 3.117111 | -2.60e-10 | -0.000 |
models.itu676.gammaw_exact | 199.0 | 1013.25 | 7.5 | 288.15 | 2.983548 | 2.983548 | -2.23e-10 | -0.000 |
models.itu676.gammaw_exact | 200.0 | 1013.25 | 7.5 | 288.15 | 2.874824 | 2.874824 | 8.12e-11 | 0.000 |
models.itu676.gammaw_exact | 201.0 | 1013.25 | 7.5 | 288.15 | 2.785901 | 2.785901 | 3.81e-10 | 0.000 |
models.itu676.gammaw_exact | 202.0 | 1013.25 | 7.5 | 288.15 | 2.712953 | 2.712953 | -1.21e-10 | -0.000 |
models.itu676.gammaw_exact | 203.0 | 1013.25 | 7.5 | 288.15 | 2.653040 | 2.653040 | -1.88e-10 | -0.000 |
models.itu676.gammaw_exact | 204.0 | 1013.25 | 7.5 | 288.15 | 2.603874 | 2.603874 | 4.56e-10 | 0.000 |
models.itu676.gammaw_exact | 205.0 | 1013.25 | 7.5 | 288.15 | 2.563651 | 2.563651 | -1.71e-11 | -0.000 |
models.itu676.gammaw_exact | 206.0 | 1013.25 | 7.5 | 288.15 | 2.530936 | 2.530936 | 4.55e-10 | 0.000 |
models.itu676.gammaw_exact | 207.0 | 1013.25 | 7.5 | 288.15 | 2.504575 | 2.504575 | 2.43e-10 | 0.000 |
models.itu676.gammaw_exact | 208.0 | 1013.25 | 7.5 | 288.15 | 2.483635 | 2.483635 | 2.58e-11 | 0.000 |
models.itu676.gammaw_exact | 209.0 | 1013.25 | 7.5 | 288.15 | 2.467350 | 2.467350 | -4.26e-10 | -0.000 |
models.itu676.gammaw_exact | 210.0 | 1013.25 | 7.5 | 288.15 | 2.455091 | 2.455091 | -2.25e-10 | -0.000 |
models.itu676.gammaw_exact | 211.0 | 1013.25 | 7.5 | 288.15 | 2.446336 | 2.446336 | 2.47e-10 | 0.000 |
models.itu676.gammaw_exact | 212.0 | 1013.25 | 7.5 | 288.15 | 2.440648 | 2.440648 | 4.97e-10 | 0.000 |
models.itu676.gammaw_exact | 213.0 | 1013.25 | 7.5 | 288.15 | 2.437662 | 2.437662 | 2.95e-10 | 0.000 |
models.itu676.gammaw_exact | 214.0 | 1013.25 | 7.5 | 288.15 | 2.437068 | 2.437068 | -4.04e-10 | -0.000 |
models.itu676.gammaw_exact | 215.0 | 1013.25 | 7.5 | 288.15 | 2.438603 | 2.438603 | -2.70e-10 | -0.000 |
models.itu676.gammaw_exact | 216.0 | 1013.25 | 7.5 | 288.15 | 2.442042 | 2.442042 | 2.94e-10 | 0.000 |
models.itu676.gammaw_exact | 217.0 | 1013.25 | 7.5 | 288.15 | 2.447193 | 2.447193 | 1.67e-10 | 0.000 |
models.itu676.gammaw_exact | 218.0 | 1013.25 | 7.5 | 288.15 | 2.453891 | 2.453891 | 7.04e-11 | 0.000 |
models.itu676.gammaw_exact | 219.0 | 1013.25 | 7.5 | 288.15 | 2.461991 | 2.461991 | -3.51e-10 | -0.000 |
models.itu676.gammaw_exact | 220.0 | 1013.25 | 7.5 | 288.15 | 2.471371 | 2.471371 | 4.15e-10 | 0.000 |
models.itu676.gammaw_exact | 221.0 | 1013.25 | 7.5 | 288.15 | 2.481920 | 2.481920 | 1.09e-10 | 0.000 |
models.itu676.gammaw_exact | 222.0 | 1013.25 | 7.5 | 288.15 | 2.493546 | 2.493546 | -2.36e-10 | -0.000 |
models.itu676.gammaw_exact | 223.0 | 1013.25 | 7.5 | 288.15 | 2.506164 | 2.506164 | -2.80e-11 | -0.000 |
models.itu676.gammaw_exact | 224.0 | 1013.25 | 7.5 | 288.15 | 2.519702 | 2.519702 | 4.07e-10 | 0.000 |
models.itu676.gammaw_exact | 225.0 | 1013.25 | 7.5 | 288.15 | 2.534095 | 2.534095 | -1.60e-10 | -0.000 |
models.itu676.gammaw_exact | 226.0 | 1013.25 | 7.5 | 288.15 | 2.549288 | 2.549288 | -2.85e-10 | -0.000 |
models.itu676.gammaw_exact | 227.0 | 1013.25 | 7.5 | 288.15 | 2.565229 | 2.565229 | -2.27e-10 | -0.000 |
models.itu676.gammaw_exact | 228.0 | 1013.25 | 7.5 | 288.15 | 2.581875 | 2.581875 | -2.25e-10 | -0.000 |
models.itu676.gammaw_exact | 229.0 | 1013.25 | 7.5 | 288.15 | 2.599186 | 2.599186 | 4.31e-10 | 0.000 |
models.itu676.gammaw_exact | 230.0 | 1013.25 | 7.5 | 288.15 | 2.617127 | 2.617127 | 5.74e-12 | 0.000 |
models.itu676.gammaw_exact | 231.0 | 1013.25 | 7.5 | 288.15 | 2.635666 | 2.635666 | 2.87e-10 | 0.000 |
models.itu676.gammaw_exact | 232.0 | 1013.25 | 7.5 | 288.15 | 2.654776 | 2.654776 | -3.44e-10 | -0.000 |
models.itu676.gammaw_exact | 233.0 | 1013.25 | 7.5 | 288.15 | 2.674433 | 2.674433 | -4.42e-10 | -0.000 |
models.itu676.gammaw_exact | 234.0 | 1013.25 | 7.5 | 288.15 | 2.694613 | 2.694613 | -2.74e-10 | -0.000 |
models.itu676.gammaw_exact | 235.0 | 1013.25 | 7.5 | 288.15 | 2.715299 | 2.715299 | -5.39e-11 | -0.000 |
models.itu676.gammaw_exact | 236.0 | 1013.25 | 7.5 | 288.15 | 2.736471 | 2.736471 | -1.84e-10 | -0.000 |
models.itu676.gammaw_exact | 237.0 | 1013.25 | 7.5 | 288.15 | 2.758115 | 2.758115 | -5.87e-11 | -0.000 |
models.itu676.gammaw_exact | 238.0 | 1013.25 | 7.5 | 288.15 | 2.780217 | 2.780217 | 8.95e-11 | 0.000 |
models.itu676.gammaw_exact | 239.0 | 1013.25 | 7.5 | 288.15 | 2.802764 | 2.802764 | 1.40e-10 | 0.000 |
models.itu676.gammaw_exact | 240.0 | 1013.25 | 7.5 | 288.15 | 2.825747 | 2.825747 | 4.40e-11 | 0.000 |
models.itu676.gammaw_exact | 241.0 | 1013.25 | 7.5 | 288.15 | 2.849156 | 2.849156 | -4.81e-10 | -0.000 |
models.itu676.gammaw_exact | 242.0 | 1013.25 | 7.5 | 288.15 | 2.872982 | 2.872982 | -2.08e-10 | -0.000 |
models.itu676.gammaw_exact | 243.0 | 1013.25 | 7.5 | 288.15 | 2.897219 | 2.897219 | 3.41e-10 | 0.000 |
models.itu676.gammaw_exact | 244.0 | 1013.25 | 7.5 | 288.15 | 2.921860 | 2.921860 | 2.94e-10 | 0.000 |
models.itu676.gammaw_exact | 245.0 | 1013.25 | 7.5 | 288.15 | 2.946902 | 2.946902 | -8.64e-11 | -0.000 |
models.itu676.gammaw_exact | 246.0 | 1013.25 | 7.5 | 288.15 | 2.972339 | 2.972339 | 3.36e-10 | 0.000 |
models.itu676.gammaw_exact | 247.0 | 1013.25 | 7.5 | 288.15 | 2.998168 | 2.998168 | -3.91e-10 | -0.000 |
models.itu676.gammaw_exact | 248.0 | 1013.25 | 7.5 | 288.15 | 3.024387 | 3.024387 | -1.28e-10 | -0.000 |
models.itu676.gammaw_exact | 249.0 | 1013.25 | 7.5 | 288.15 | 3.050995 | 3.050995 | 4.00e-10 | 0.000 |
models.itu676.gammaw_exact | 250.0 | 1013.25 | 7.5 | 288.15 | 3.077990 | 3.077990 | 1.21e-10 | 0.000 |
models.itu676.gammaw_exact | 251.0 | 1013.25 | 7.5 | 288.15 | 3.105372 | 3.105372 | 1.04e-10 | 0.000 |
models.itu676.gammaw_exact | 252.0 | 1013.25 | 7.5 | 288.15 | 3.133141 | 3.133141 | 4.16e-10 | 0.000 |
models.itu676.gammaw_exact | 253.0 | 1013.25 | 7.5 | 288.15 | 3.161300 | 3.161300 | -3.25e-10 | -0.000 |
models.itu676.gammaw_exact | 254.0 | 1013.25 | 7.5 | 288.15 | 3.189848 | 3.189848 | -4.54e-10 | -0.000 |
models.itu676.gammaw_exact | 255.0 | 1013.25 | 7.5 | 288.15 | 3.218790 | 3.218790 | 3.39e-10 | 0.000 |
models.itu676.gammaw_exact | 256.0 | 1013.25 | 7.5 | 288.15 | 3.248127 | 3.248127 | -1.86e-10 | -0.000 |
models.itu676.gammaw_exact | 257.0 | 1013.25 | 7.5 | 288.15 | 3.277865 | 3.277865 | 2.51e-10 | 0.000 |
models.itu676.gammaw_exact | 258.0 | 1013.25 | 7.5 | 288.15 | 3.308006 | 3.308006 | -2.83e-10 | -0.000 |
models.itu676.gammaw_exact | 259.0 | 1013.25 | 7.5 | 288.15 | 3.338557 | 3.338557 | 4.77e-10 | 0.000 |
models.itu676.gammaw_exact | 260.0 | 1013.25 | 7.5 | 288.15 | 3.369523 | 3.369523 | 3.59e-10 | 0.000 |
models.itu676.gammaw_exact | 261.0 | 1013.25 | 7.5 | 288.15 | 3.400910 | 3.400910 | -1.47e-10 | -0.000 |
models.itu676.gammaw_exact | 262.0 | 1013.25 | 7.5 | 288.15 | 3.432726 | 3.432726 | -3.72e-10 | -0.000 |
models.itu676.gammaw_exact | 263.0 | 1013.25 | 7.5 | 288.15 | 3.464979 | 3.464979 | 8.01e-11 | 0.000 |
models.itu676.gammaw_exact | 264.0 | 1013.25 | 7.5 | 288.15 | 3.497677 | 3.497677 | 4.26e-10 | 0.000 |
models.itu676.gammaw_exact | 265.0 | 1013.25 | 7.5 | 288.15 | 3.530831 | 3.530831 | -2.51e-10 | -0.000 |
models.itu676.gammaw_exact | 266.0 | 1013.25 | 7.5 | 288.15 | 3.564451 | 3.564451 | 3.07e-10 | 0.000 |
models.itu676.gammaw_exact | 267.0 | 1013.25 | 7.5 | 288.15 | 3.598549 | 3.598549 | 2.46e-10 | 0.000 |
models.itu676.gammaw_exact | 268.0 | 1013.25 | 7.5 | 288.15 | 3.633137 | 3.633137 | -2.46e-10 | -0.000 |
models.itu676.gammaw_exact | 269.0 | 1013.25 | 7.5 | 288.15 | 3.668230 | 3.668230 | 4.61e-10 | 0.000 |
models.itu676.gammaw_exact | 270.0 | 1013.25 | 7.5 | 288.15 | 3.703843 | 3.703843 | -2.70e-10 | -0.000 |
models.itu676.gammaw_exact | 271.0 | 1013.25 | 7.5 | 288.15 | 3.739992 | 3.739992 | 2.09e-10 | 0.000 |
models.itu676.gammaw_exact | 272.0 | 1013.25 | 7.5 | 288.15 | 3.776695 | 3.776695 | -2.73e-10 | -0.000 |
models.itu676.gammaw_exact | 273.0 | 1013.25 | 7.5 | 288.15 | 3.813971 | 3.813971 | 3.02e-10 | 0.000 |
models.itu676.gammaw_exact | 274.0 | 1013.25 | 7.5 | 288.15 | 3.851844 | 3.851844 | -4.14e-10 | -0.000 |
models.itu676.gammaw_exact | 275.0 | 1013.25 | 7.5 | 288.15 | 3.890335 | 3.890335 | -4.01e-10 | -0.000 |
models.itu676.gammaw_exact | 276.0 | 1013.25 | 7.5 | 288.15 | 3.929471 | 3.929471 | 3.41e-11 | 0.000 |
models.itu676.gammaw_exact | 277.0 | 1013.25 | 7.5 | 288.15 | 3.969279 | 3.969279 | -3.16e-10 | -0.000 |
models.itu676.gammaw_exact | 278.0 | 1013.25 | 7.5 | 288.15 | 4.009791 | 4.009791 | -3.08e-10 | -0.000 |
models.itu676.gammaw_exact | 279.0 | 1013.25 | 7.5 | 288.15 | 4.051041 | 4.051041 | 3.06e-10 | 0.000 |
models.itu676.gammaw_exact | 280.0 | 1013.25 | 7.5 | 288.15 | 4.093065 | 4.093065 | -4.81e-10 | -0.000 |
models.itu676.gammaw_exact | 281.0 | 1013.25 | 7.5 | 288.15 | 4.135906 | 4.135906 | 4.53e-10 | 0.000 |
models.itu676.gammaw_exact | 282.0 | 1013.25 | 7.5 | 288.15 | 4.179609 | 4.179609 | 3.91e-10 | 0.000 |
models.itu676.gammaw_exact | 283.0 | 1013.25 | 7.5 | 288.15 | 4.224225 | 4.224225 | 3.01e-11 | 0.000 |
models.itu676.gammaw_exact | 284.0 | 1013.25 | 7.5 | 288.15 | 4.269810 | 4.269810 | -4.46e-10 | -0.000 |
models.itu676.gammaw_exact | 285.0 | 1013.25 | 7.5 | 288.15 | 4.316428 | 4.316428 | 4.53e-10 | 0.000 |
models.itu676.gammaw_exact | 286.0 | 1013.25 | 7.5 | 288.15 | 4.364148 | 4.364148 | 4.08e-10 | 0.000 |
models.itu676.gammaw_exact | 287.0 | 1013.25 | 7.5 | 288.15 | 4.413050 | 4.413050 | -2.78e-10 | -0.000 |
models.itu676.gammaw_exact | 288.0 | 1013.25 | 7.5 | 288.15 | 4.463223 | 4.463223 | 3.86e-10 | 0.000 |
models.itu676.gammaw_exact | 289.0 | 1013.25 | 7.5 | 288.15 | 4.514767 | 4.514767 | 4.41e-10 | 0.000 |
models.itu676.gammaw_exact | 290.0 | 1013.25 | 7.5 | 288.15 | 4.567797 | 4.567797 | 1.79e-10 | 0.000 |
models.itu676.gammaw_exact | 291.0 | 1013.25 | 7.5 | 288.15 | 4.622443 | 4.622443 | 8.59e-11 | 0.000 |
models.itu676.gammaw_exact | 292.0 | 1013.25 | 7.5 | 288.15 | 4.678854 | 4.678854 | 6.54e-11 | 0.000 |
models.itu676.gammaw_exact | 293.0 | 1013.25 | 7.5 | 288.15 | 4.737200 | 4.737200 | -1.58e-10 | -0.000 |
models.itu676.gammaw_exact | 294.0 | 1013.25 | 7.5 | 288.15 | 4.797679 | 4.797679 | 2.73e-10 | 0.000 |
models.itu676.gammaw_exact | 295.0 | 1013.25 | 7.5 | 288.15 | 4.860520 | 4.860520 | -4.60e-10 | -0.000 |
models.itu676.gammaw_exact | 296.0 | 1013.25 | 7.5 | 288.15 | 4.925989 | 4.925989 | -4.83e-10 | -0.000 |
models.itu676.gammaw_exact | 297.0 | 1013.25 | 7.5 | 288.15 | 4.994400 | 4.994400 | -1.51e-10 | -0.000 |
models.itu676.gammaw_exact | 298.0 | 1013.25 | 7.5 | 288.15 | 5.066121 | 5.066121 | -3.86e-10 | -0.000 |
models.itu676.gammaw_exact | 299.0 | 1013.25 | 7.5 | 288.15 | 5.141589 | 5.141589 | 5.29e-11 | 0.000 |
models.itu676.gammaw_exact | 300.0 | 1013.25 | 7.5 | 288.15 | 5.221329 | 5.221329 | -1.05e-10 | -0.000 |
models.itu676.gammaw_exact | 301.0 | 1013.25 | 7.5 | 288.15 | 5.305969 | 5.305969 | 3.57e-10 | 0.000 |
models.itu676.gammaw_exact | 302.0 | 1013.25 | 7.5 | 288.15 | 5.396270 | 5.396270 | -2.00e-10 | -0.000 |
models.itu676.gammaw_exact | 303.0 | 1013.25 | 7.5 | 288.15 | 5.493166 | 5.493166 | -5.73e-11 | -0.000 |
models.itu676.gammaw_exact | 304.0 | 1013.25 | 7.5 | 288.15 | 5.597805 | 5.597805 | -2.14e-10 | -0.000 |
models.itu676.gammaw_exact | 305.0 | 1013.25 | 7.5 | 288.15 | 5.711616 | 5.711616 | -1.55e-10 | -0.000 |
models.itu676.gammaw_exact | 306.0 | 1013.25 | 7.5 | 288.15 | 5.836397 | 5.836397 | 3.92e-10 | 0.000 |
models.itu676.gammaw_exact | 307.0 | 1013.25 | 7.5 | 288.15 | 5.974431 | 5.974431 | 4.62e-10 | 0.000 |
models.itu676.gammaw_exact | 308.0 | 1013.25 | 7.5 | 288.15 | 6.128660 | 6.128660 | -3.56e-10 | -0.000 |
models.itu676.gammaw_exact | 309.0 | 1013.25 | 7.5 | 288.15 | 6.302915 | 6.302915 | -4.74e-10 | -0.000 |
models.itu676.gammaw_exact | 310.0 | 1013.25 | 7.5 | 288.15 | 6.502269 | 6.502269 | 1.25e-10 | 0.000 |
models.itu676.gammaw_exact | 311.0 | 1013.25 | 7.5 | 288.15 | 6.733539 | 6.733539 | -5.26e-11 | -0.000 |
models.itu676.gammaw_exact | 312.0 | 1013.25 | 7.5 | 288.15 | 7.006054 | 7.006054 | -1.15e-10 | -0.000 |
models.itu676.gammaw_exact | 313.0 | 1013.25 | 7.5 | 288.15 | 7.332839 | 7.332839 | 1.12e-10 | 0.000 |
models.itu676.gammaw_exact | 314.0 | 1013.25 | 7.5 | 288.15 | 7.732474 | 7.732474 | -2.90e-10 | -0.000 |
models.itu676.gammaw_exact | 315.0 | 1013.25 | 7.5 | 288.15 | 8.232112 | 8.232112 | 3.91e-10 | 0.000 |
models.itu676.gammaw_exact | 316.0 | 1013.25 | 7.5 | 288.15 | 8.872465 | 8.872465 | -3.46e-11 | -0.000 |
models.itu676.gammaw_exact | 317.0 | 1013.25 | 7.5 | 288.15 | 9.716073 | 9.716073 | 7.11e-12 | 0.000 |
models.itu676.gammaw_exact | 318.0 | 1013.25 | 7.5 | 288.15 | 10.860390 | 10.860390 | 1.40e-09 | 0.000 |
models.itu676.gammaw_exact | 319.0 | 1013.25 | 7.5 | 288.15 | 12.453804 | 12.453804 | -3.75e-10 | -0.000 |
models.itu676.gammaw_exact | 320.0 | 1013.25 | 7.5 | 288.15 | 14.694418 | 14.694418 | -2.06e-09 | -0.000 |
models.itu676.gammaw_exact | 321.0 | 1013.25 | 7.5 | 288.15 | 17.779900 | 17.779900 | -2.11e-09 | -0.000 |
models.itu676.gammaw_exact | 322.0 | 1013.25 | 7.5 | 288.15 | 21.958394 | 21.958394 | 1.44e-09 | 0.000 |
models.itu676.gammaw_exact | 323.0 | 1013.25 | 7.5 | 288.15 | 27.584296 | 27.584296 | 1.32e-09 | 0.000 |
models.itu676.gammaw_exact | 324.0 | 1013.25 | 7.5 | 288.15 | 33.980828 | 33.980828 | 4.39e-09 | 0.000 |
models.itu676.gammaw_exact | 325.0 | 1013.25 | 7.5 | 288.15 | 37.862111 | 37.862111 | -1.15e-09 | -0.000 |
models.itu676.gammaw_exact | 326.0 | 1013.25 | 7.5 | 288.15 | 35.904757 | 35.904757 | 4.96e-09 | 0.000 |
models.itu676.gammaw_exact | 327.0 | 1013.25 | 7.5 | 288.15 | 29.947920 | 29.947920 | 1.76e-09 | 0.000 |
models.itu676.gammaw_exact | 328.0 | 1013.25 | 7.5 | 288.15 | 23.872443 | 23.872443 | 3.09e-09 | 0.000 |
models.itu676.gammaw_exact | 329.0 | 1013.25 | 7.5 | 288.15 | 19.264553 | 19.264553 | 3.08e-09 | 0.000 |
models.itu676.gammaw_exact | 330.0 | 1013.25 | 7.5 | 288.15 | 16.084329 | 16.084329 | 3.44e-09 | 0.000 |
models.itu676.gammaw_exact | 331.0 | 1013.25 | 7.5 | 288.15 | 13.929485 | 13.929485 | -3.04e-09 | -0.000 |
models.itu676.gammaw_exact | 332.0 | 1013.25 | 7.5 | 288.15 | 12.457413 | 12.457413 | 4.69e-09 | 0.000 |
models.itu676.gammaw_exact | 333.0 | 1013.25 | 7.5 | 288.15 | 11.436764 | 11.436764 | 3.81e-09 | 0.000 |
models.itu676.gammaw_exact | 334.0 | 1013.25 | 7.5 | 288.15 | 10.719742 | 10.719742 | -2.03e-09 | -0.000 |
models.itu676.gammaw_exact | 335.0 | 1013.25 | 7.5 | 288.15 | 10.211790 | 10.211790 | 8.85e-10 | 0.000 |
models.itu676.gammaw_exact | 336.0 | 1013.25 | 7.5 | 288.15 | 9.850283 | 9.850283 | 2.91e-11 | 0.000 |
models.itu676.gammaw_exact | 337.0 | 1013.25 | 7.5 | 288.15 | 9.592983 | 9.592983 | 1.44e-10 | 0.000 |
models.itu676.gammaw_exact | 338.0 | 1013.25 | 7.5 | 288.15 | 9.413703 | 9.413703 | -1.76e-10 | -0.000 |
models.itu676.gammaw_exact | 339.0 | 1013.25 | 7.5 | 288.15 | 9.296113 | 9.296113 | 3.43e-10 | 0.000 |
models.itu676.gammaw_exact | 340.0 | 1013.25 | 7.5 | 288.15 | 9.228131 | 9.228131 | -3.86e-10 | -0.000 |
models.itu676.gammaw_exact | 341.0 | 1013.25 | 7.5 | 288.15 | 9.200536 | 9.200536 | 1.75e-10 | 0.000 |
models.itu676.gammaw_exact | 342.0 | 1013.25 | 7.5 | 288.15 | 9.206573 | 9.206573 | 2.20e-10 | 0.000 |
models.itu676.gammaw_exact | 343.0 | 1013.25 | 7.5 | 288.15 | 9.241420 | 9.241420 | -1.59e-10 | -0.000 |
models.itu676.gammaw_exact | 344.0 | 1013.25 | 7.5 | 288.15 | 9.301710 | 9.301710 | 1.14e-11 | 0.000 |
models.itu676.gammaw_exact | 345.0 | 1013.25 | 7.5 | 288.15 | 9.385171 | 9.385171 | 4.16e-10 | 0.000 |
models.itu676.gammaw_exact | 346.0 | 1013.25 | 7.5 | 288.15 | 9.490383 | 9.490383 | -4.91e-10 | -0.000 |
models.itu676.gammaw_exact | 347.0 | 1013.25 | 7.5 | 288.15 | 9.616617 | 9.616617 | 2.70e-10 | 0.000 |
models.itu676.gammaw_exact | 348.0 | 1013.25 | 7.5 | 288.15 | 9.763734 | 9.763734 | -2.46e-10 | -0.000 |
models.itu676.gammaw_exact | 349.0 | 1013.25 | 7.5 | 288.15 | 9.932122 | 9.932122 | -2.47e-10 | -0.000 |
models.itu676.gammaw_exact | 350.0 | 1013.25 | 7.5 | 288.15 | 10.122673 | 10.122673 | 4.87e-10 | 0.000 |
Function zenit_water_vapour_attenuation¶
The table below contains the results of testing function zenit_water_vapour_attenuation
.
The test cases were extracted from spreadsheet ITURP676-12_zenith_attenuation.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 0.0 # (°N)
lon = 0.0 # (°E)
p = 0.0 # (hPa)
f = 14.25 # (GHz)
h = 0.031382984 # (km)
V_t = 33.72946527 # (kg/m2)
# Make call to test-function zenit_water_vapour_attenuation
itur_val = itur.models.itu676.zenit_water_vapour_attenuation(lat=lat, lon=lon, p=p, f=f, h=h, V_t=V_t)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.070935174 # (dB/km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | p (hPa) | f (GHz) | h (km) | V_t (kg/m2) | ITU Validation (dB/km) | ITU-Rpy Result (dB/km) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|---|---|
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.031383 | 33.729465 | 0.070935 | 0.070935 | 1.14e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.046123 | 36.048109 | 0.076415 | 0.076415 | 4.43e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.000000 | 37.955600 | 0.080993 | 0.080993 | 2.82e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.031383 | 35.725554 | 0.075647 | 0.075647 | 9.46e-11 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.046123 | 37.513014 | 0.079925 | 0.079925 | -1.76e-11 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.000000 | 40.511906 | 0.087230 | 0.087230 | -4.29e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.031383 | 37.295953 | 0.079403 | 0.079403 | -3.61e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.046123 | 38.329647 | 0.081899 | 0.081899 | 4.16e-11 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.000000 | 42.210224 | 0.091438 | 0.091438 | -3.44e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.031383 | 38.244078 | 0.081691 | 0.081691 | -3.08e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.046123 | 39.051281 | 0.083652 | 0.083652 | 4.58e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.000000 | 43.410461 | 0.094442 | 0.094442 | 4.65e-11 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.031383 | 33.729465 | 0.334146 | 0.334146 | -1.16e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.046123 | 36.048109 | 0.358893 | 0.358893 | 1.68e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.000000 | 37.955600 | 0.383457 | 0.383457 | -2.03e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.031383 | 35.725554 | 0.356150 | 0.356150 | 2.66e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.046123 | 37.513014 | 0.375233 | 0.375233 | -2.68e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.000000 | 40.511906 | 0.412697 | 0.412697 | -4.18e-11 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.031383 | 37.295953 | 0.373674 | 0.373674 | -3.85e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.046123 | 38.329647 | 0.384412 | 0.384412 | -3.14e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.000000 | 42.210224 | 0.432403 | 0.432403 | 3.39e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.031383 | 38.244078 | 0.384346 | 0.384346 | 2.10e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.046123 | 39.051281 | 0.392567 | 0.392567 | 2.46e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.000000 | 43.410461 | 0.446465 | 0.446465 | 3.82e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.000000 | 49.513184 | 0.110117 | 0.110117 | -6.24e-11 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.008617 | 57.497546 | 0.131634 | 0.131634 | 4.11e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.000000 | 52.007390 | 0.116716 | 0.116716 | 9.22e-11 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.008617 | 59.222332 | 0.136433 | 0.136433 | 1.12e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.000000 | 53.485111 | 0.120678 | 0.120678 | 2.87e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.008617 | 60.314611 | 0.139500 | 0.139500 | 1.37e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.000000 | 54.631809 | 0.123780 | 0.123780 | -3.43e-11 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.008617 | 61.161560 | 0.141893 | 0.141893 | -3.81e-11 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.000000 | 49.513184 | 0.519700 | 0.519700 | -2.51e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.008617 | 57.497546 | 0.618607 | 0.618607 | -4.10e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.000000 | 52.007390 | 0.550470 | 0.550470 | -1.29e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.008617 | 59.222332 | 0.640866 | 0.640866 | 4.06e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.000000 | 53.485111 | 0.568929 | 0.568929 | -8.01e-11 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.008617 | 60.314611 | 0.655082 | 0.655082 | 1.67e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.000000 | 54.631809 | 0.583371 | 0.583371 | -2.92e-11 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.008617 | 61.161560 | 0.666170 | 0.666170 | -2.41e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.209384 | 70.591345 | 0.169409 | 0.169409 | -5.27e-11 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.051251 | 62.584697 | 0.145943 | 0.145943 | 2.77e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 2.539862 | 25.925669 | 0.053180 | 0.053180 | -2.29e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.209384 | 72.477248 | 0.175105 | 0.175105 | -1.35e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.051251 | 63.593435 | 0.148835 | 0.148835 | -2.53e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 2.539862 | 26.641637 | 0.054765 | 0.054765 | -3.49e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.209384 | 73.574292 | 0.178448 | 0.178448 | 4.80e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.051251 | 64.336356 | 0.150977 | 0.150977 | -1.79e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 2.539862 | 27.087127 | 0.055756 | 0.055756 | -2.94e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.209384 | 74.502008 | 0.181291 | 0.181291 | -2.89e-11 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 0.051251 | 64.946376 | 0.152744 | 0.152744 | -1.11e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 14.25 | 2.539862 | 27.511871 | 0.056704 | 0.056704 | -2.94e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.209384 | 70.591345 | 0.771408 | 0.771408 | 3.93e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.051251 | 62.584697 | 0.680016 | 0.680016 | 4.93e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 2.539862 | 25.925669 | 0.192886 | 0.192886 | 2.83e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.209384 | 72.477248 | 0.796963 | 0.796963 | -4.93e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.051251 | 63.593435 | 0.693311 | 0.693311 | 3.27e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 2.539862 | 26.641637 | 0.198603 | 0.198603 | 8.58e-11 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.209384 | 73.574292 | 0.811954 | 0.811954 | 4.39e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.051251 | 64.336356 | 0.703154 | 0.703154 | 1.90e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 2.539862 | 27.087127 | 0.202174 | 0.202174 | 3.83e-10 | 0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.209384 | 74.502008 | 0.824702 | 0.824702 | -2.21e-10 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 0.051251 | 64.946376 | 0.711268 | 0.711268 | -7.39e-11 | -0.000 |
models.itu676.zenit_water_vapour_attenuation | 0.0 | 0.0 | 0.0 | 29.00 | 2.539862 | 27.511871 | 0.205590 | 0.205590 | 1.52e-10 | 0.000 |
Validation results ITU-R P.836-6¶
This page contains the validation examples for Recommendation ITU-R P.836-6: Water vapour: surface density and total columnar content.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function surface_water_vapour_density¶
The table below contains the results of testing function surface_water_vapour_density
.
The test cases were extracted from spreadsheet ITURP836-6_surface_water_vapour_density_annual.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.133 # (°N)
lon = 101.7 # (°E)
alt = 0.05125146 # (km)
p = 0.1 # (%)
# Make call to test-function surface_water_vapour_density
itur_val = itur.models.itu836.surface_water_vapour_density(lat=lat, lon=lon, alt=alt, p=p)
# Compute error with respect to value in ITU example file
ITU_example_val = 24.32302408 # (g/m3)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | alt (km) | p (%) | ITU Validation (g/m3) | ITU-Rpy Result (g/m3) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|
models.itu836.surface_water_vapour_density | 3.133 | 101.70 | 0.051251 | 0.10 | 24.323024 | 24.323024 | 3.06e-08 | 0.000 |
models.itu836.surface_water_vapour_density | 3.133 | 101.70 | 0.051251 | 0.15 | 24.195729 | 24.195729 | 3.52e-08 | 0.000 |
models.itu836.surface_water_vapour_density | 3.133 | 101.70 | 0.051251 | 0.30 | 23.952441 | 23.952441 | 3.28e-08 | 0.000 |
models.itu836.surface_water_vapour_density | 3.133 | 101.70 | 0.051251 | 0.35 | 23.893346 | 23.893346 | 2.71e-08 | 0.000 |
models.itu836.surface_water_vapour_density | 22.900 | -43.23 | 0.000000 | 0.10 | 21.591649 | 21.591649 | -2.67e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 22.900 | -43.23 | 0.000000 | 0.15 | 21.461644 | 21.461644 | 6.24e-10 | 0.000 |
models.itu836.surface_water_vapour_density | 22.900 | -43.23 | 0.000000 | 0.30 | 21.247533 | 21.247533 | 4.81e-09 | 0.000 |
models.itu836.surface_water_vapour_density | 22.900 | -43.23 | 0.000000 | 0.35 | 21.186760 | 21.186760 | -1.08e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 23.000 | 30.00 | 0.187594 | 0.10 | 11.983147 | 11.983148 | -2.61e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 23.000 | 30.00 | 0.187594 | 0.15 | 11.721333 | 11.721333 | 2.28e-09 | 0.000 |
models.itu836.surface_water_vapour_density | 23.000 | 30.00 | 0.187594 | 0.30 | 11.229887 | 11.229887 | -6.12e-10 | -0.000 |
models.itu836.surface_water_vapour_density | 23.000 | 30.00 | 0.187594 | 0.35 | 11.117501 | 11.117501 | -4.93e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 25.780 | -80.22 | 0.008617 | 0.10 | 23.448289 | 23.448289 | -4.73e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 25.780 | -80.22 | 0.008617 | 0.15 | 23.281960 | 23.281960 | -4.93e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 25.780 | -80.22 | 0.008617 | 0.30 | 23.000809 | 23.000809 | -1.48e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 25.780 | -80.22 | 0.008617 | 0.35 | 22.937809 | 22.937809 | -3.99e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 28.717 | 77.30 | 0.209384 | 0.10 | 26.009841 | 26.009841 | 1.07e-08 | 0.000 |
models.itu836.surface_water_vapour_density | 28.717 | 77.30 | 0.209384 | 0.15 | 25.769706 | 25.769706 | 3.15e-09 | 0.000 |
models.itu836.surface_water_vapour_density | 28.717 | 77.30 | 0.209384 | 0.30 | 25.398943 | 25.398943 | 8.78e-09 | 0.000 |
models.itu836.surface_water_vapour_density | 28.717 | 77.30 | 0.209384 | 0.35 | 25.314770 | 25.314770 | 9.35e-09 | 0.000 |
models.itu836.surface_water_vapour_density | 33.940 | 18.43 | 0.000000 | 0.10 | 24.001565 | 24.001565 | -3.08e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 33.940 | 18.43 | 0.000000 | 0.15 | 23.859876 | 23.859876 | -4.09e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 33.940 | 18.43 | 0.000000 | 0.30 | 23.514645 | 23.514645 | 3.03e-09 | 0.000 |
models.itu836.surface_water_vapour_density | 33.940 | 18.43 | 0.000000 | 0.35 | 23.419545 | 23.419545 | -3.93e-09 | -0.000 |
models.itu836.surface_water_vapour_density | 41.900 | 12.49 | 0.046123 | 0.10 | 19.851665 | 19.851665 | 1.54e-08 | 0.000 |
models.itu836.surface_water_vapour_density | 41.900 | 12.49 | 0.046123 | 0.15 | 19.556349 | 19.556349 | 1.09e-08 | 0.000 |
models.itu836.surface_water_vapour_density | 41.900 | 12.49 | 0.046123 | 0.30 | 19.092542 | 19.092542 | 1.56e-08 | 0.000 |
models.itu836.surface_water_vapour_density | 41.900 | 12.49 | 0.046123 | 0.35 | 18.988935 | 18.988935 | 1.70e-08 | 0.000 |
models.itu836.surface_water_vapour_density | 51.500 | -0.14 | 0.031383 | 0.10 | 15.370307 | 15.370307 | -1.86e-08 | -0.000 |
models.itu836.surface_water_vapour_density | 51.500 | -0.14 | 0.031383 | 0.15 | 15.177703 | 15.177703 | -1.26e-08 | -0.000 |
models.itu836.surface_water_vapour_density | 51.500 | -0.14 | 0.031383 | 0.30 | 14.783593 | 14.783593 | -1.66e-08 | -0.000 |
models.itu836.surface_water_vapour_density | 51.500 | -0.14 | 0.031383 | 0.35 | 14.671618 | 14.671618 | -1.81e-08 | -0.000 |
Function total_water_vapour_content¶
The table below contains the results of testing function total_water_vapour_content
.
The test cases were extracted from spreadsheet ITURP836-6_total_water_vapour_content_annual.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.133 # (°N)
lon = 101.7 # (°E)
alt = 0.05125146 # (km)
p = 0.1 # (%)
# Make call to test-function total_water_vapour_content
itur_val = itur.models.itu836.total_water_vapour_content(lat=lat, lon=lon, alt=alt, p=p)
# Compute error with respect to value in ITU example file
ITU_example_val = 65.92042976 # (kg/m2)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | alt (km) | p (%) | ITU Validation (kg/m2) | ITU-Rpy Result (kg/m2) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|
models.itu836.total_water_vapour_content | 3.133 | 101.70 | 0.051251 | 0.10 | 65.920430 | 65.920430 | 8.01e-08 | 0.000 |
models.itu836.total_water_vapour_content | 3.133 | 101.70 | 0.051251 | 0.15 | 65.350645 | 65.350645 | 8.86e-08 | 0.000 |
models.itu836.total_water_vapour_content | 3.133 | 101.70 | 0.051251 | 0.30 | 64.336356 | 64.336356 | 8.42e-08 | 0.000 |
models.itu836.total_water_vapour_content | 3.133 | 101.70 | 0.051251 | 0.35 | 64.112166 | 64.112166 | 8.34e-08 | 0.000 |
models.itu836.total_water_vapour_content | 22.900 | -43.23 | 0.000000 | 0.10 | 56.387886 | 56.387886 | 2.81e-09 | 0.000 |
models.itu836.total_water_vapour_content | 22.900 | -43.23 | 0.000000 | 0.15 | 55.360647 | 55.360647 | 3.97e-09 | 0.000 |
models.itu836.total_water_vapour_content | 22.900 | -43.23 | 0.000000 | 0.30 | 53.485111 | 53.485111 | -7.41e-10 | -0.000 |
models.itu836.total_water_vapour_content | 22.900 | -43.23 | 0.000000 | 0.35 | 53.039183 | 53.039183 | -1.65e-09 | -0.000 |
models.itu836.total_water_vapour_content | 23.000 | 30.00 | 0.187594 | 0.10 | 38.801076 | 38.801076 | 3.39e-09 | 0.000 |
models.itu836.total_water_vapour_content | 23.000 | 30.00 | 0.187594 | 0.15 | 37.545803 | 37.545803 | 1.80e-09 | 0.000 |
models.itu836.total_water_vapour_content | 23.000 | 30.00 | 0.187594 | 0.30 | 34.965412 | 34.965412 | 2.92e-09 | 0.000 |
models.itu836.total_water_vapour_content | 23.000 | 30.00 | 0.187594 | 0.35 | 34.401687 | 34.401687 | -4.85e-09 | -0.000 |
models.itu836.total_water_vapour_content | 25.780 | -80.22 | 0.008617 | 0.10 | 62.684831 | 62.684831 | -3.05e-09 | -0.000 |
models.itu836.total_water_vapour_content | 25.780 | -80.22 | 0.008617 | 0.15 | 61.793775 | 61.793775 | 4.01e-09 | 0.000 |
models.itu836.total_water_vapour_content | 25.780 | -80.22 | 0.008617 | 0.30 | 60.314611 | 60.314611 | -7.41e-10 | -0.000 |
models.itu836.total_water_vapour_content | 25.780 | -80.22 | 0.008617 | 0.35 | 59.984996 | 59.984996 | 3.17e-09 | 0.000 |
models.itu836.total_water_vapour_content | 28.717 | 77.30 | 0.209384 | 0.10 | 75.614529 | 75.614529 | 2.00e-08 | 0.000 |
models.itu836.total_water_vapour_content | 28.717 | 77.30 | 0.209384 | 0.15 | 74.963746 | 74.963746 | 2.42e-08 | 0.000 |
models.itu836.total_water_vapour_content | 28.717 | 77.30 | 0.209384 | 0.30 | 73.574292 | 73.574292 | 2.03e-08 | 0.000 |
models.itu836.total_water_vapour_content | 28.717 | 77.30 | 0.209384 | 0.35 | 73.243239 | 73.243239 | 2.15e-08 | 0.000 |
models.itu836.total_water_vapour_content | 33.940 | 18.43 | 0.000000 | 0.10 | 45.198952 | 45.198952 | -4.96e-09 | -0.000 |
models.itu836.total_water_vapour_content | 33.940 | 18.43 | 0.000000 | 0.15 | 44.152752 | 44.152752 | 2.59e-10 | 0.000 |
models.itu836.total_water_vapour_content | 33.940 | 18.43 | 0.000000 | 0.30 | 42.210224 | 42.210224 | -1.94e-09 | -0.000 |
models.itu836.total_water_vapour_content | 33.940 | 18.43 | 0.000000 | 0.35 | 41.697726 | 41.697726 | -3.38e-09 | -0.000 |
models.itu836.total_water_vapour_content | 41.900 | 12.49 | 0.046123 | 0.10 | 40.071283 | 40.071283 | 2.20e-08 | 0.000 |
models.itu836.total_water_vapour_content | 41.900 | 12.49 | 0.046123 | 0.15 | 39.474620 | 39.474620 | 2.39e-08 | 0.000 |
models.itu836.total_water_vapour_content | 41.900 | 12.49 | 0.046123 | 0.30 | 38.329647 | 38.329647 | 2.46e-08 | 0.000 |
models.itu836.total_water_vapour_content | 41.900 | 12.49 | 0.046123 | 0.35 | 38.083213 | 38.083213 | 2.15e-08 | 0.000 |
models.itu836.total_water_vapour_content | 51.500 | -0.14 | 0.031383 | 0.10 | 39.642498 | 39.642498 | -4.76e-08 | -0.000 |
models.itu836.total_water_vapour_content | 51.500 | -0.14 | 0.031383 | 0.15 | 38.824475 | 38.824475 | -4.33e-08 | -0.000 |
models.itu836.total_water_vapour_content | 51.500 | -0.14 | 0.031383 | 0.30 | 37.295953 | 37.295953 | -4.50e-08 | -0.000 |
models.itu836.total_water_vapour_content | 51.500 | -0.14 | 0.031383 | 0.35 | 36.822058 | 36.822058 | -4.19e-08 | -0.000 |
Validation results ITU-R P.837-7¶
This page contains the validation examples for Recommendation ITU-R P.837-7: Characteristics of precipitation for propagation modelling.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function rainfall_rate¶
The table below contains the results of testing function rainfall_rate
.
The test cases were extracted from spreadsheet ITURP837-7_rainfall_rate.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.133 # (°N)
lon = 101.7 # (°E)
p = 0.01 # (%)
# Make call to test-function rainfall_rate
itur_val = itur.models.itu837.rainfall_rate(lat=lat, lon=lon, p=p)
# Compute error with respect to value in ITU example file
ITU_example_val = 99.15117186 # (mm/hr)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | p (%) | ITU Validation (mm/hr) | ITU-Rpy Result (mm/hr) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|
models.itu837.rainfall_rate | 3.133 | 101.70 | 0.01 | 99.151172 | 99.148114 | 3.06e-03 | 0.003 |
models.itu837.rainfall_rate | 3.133 | 101.70 | 0.10 | 34.647981 | 34.648009 | -2.74e-05 | -0.000 |
models.itu837.rainfall_rate | 3.133 | 101.70 | 0.15 | 27.763620 | 27.763657 | -3.72e-05 | -0.000 |
models.itu837.rainfall_rate | 3.133 | 101.70 | 0.30 | 18.262544 | 18.262543 | 8.56e-07 | 0.000 |
models.itu837.rainfall_rate | 3.133 | 101.70 | 0.35 | 16.494932 | 16.494967 | -3.48e-05 | -0.000 |
models.itu837.rainfall_rate | 22.900 | -43.23 | 0.01 | 50.639304 | 50.639304 | -2.13e-14 | -0.000 |
models.itu837.rainfall_rate | 22.900 | -43.23 | 0.10 | 14.589630 | 14.589645 | -1.46e-05 | -0.000 |
models.itu837.rainfall_rate | 22.900 | -43.23 | 0.15 | 11.005101 | 11.005096 | 4.68e-06 | 0.000 |
models.itu837.rainfall_rate | 22.900 | -43.23 | 0.30 | 6.237962 | 6.238021 | -5.86e-05 | -0.001 |
models.itu837.rainfall_rate | 22.900 | -43.23 | 0.35 | 5.382396 | 5.382411 | -1.48e-05 | -0.000 |
models.itu837.rainfall_rate | 23.000 | 30.00 | 0.01 | 0.000000 | 0.000000 | 0.00e+00 | 0.000 |
models.itu837.rainfall_rate | 23.000 | 30.00 | 0.10 | 0.000000 | 0.000000 | 0.00e+00 | 0.000 |
models.itu837.rainfall_rate | 23.000 | 30.00 | 0.15 | 0.000000 | 0.000000 | 0.00e+00 | 0.000 |
models.itu837.rainfall_rate | 23.000 | 30.00 | 0.30 | 0.000000 | 0.000000 | 0.00e+00 | 0.000 |
models.itu837.rainfall_rate | 23.000 | 30.00 | 0.35 | 0.000000 | 0.000000 | 0.00e+00 | 0.000 |
models.itu837.rainfall_rate | 25.780 | -80.22 | 0.01 | 78.299499 | 78.298293 | 1.21e-03 | 0.002 |
models.itu837.rainfall_rate | 25.780 | -80.22 | 0.10 | 25.338881 | 25.338747 | 1.35e-04 | 0.001 |
models.itu837.rainfall_rate | 25.780 | -80.22 | 0.15 | 19.866836 | 19.866847 | -1.07e-05 | -0.000 |
models.itu837.rainfall_rate | 25.780 | -80.22 | 0.30 | 12.436766 | 12.436785 | -1.93e-05 | -0.000 |
models.itu837.rainfall_rate | 25.780 | -80.22 | 0.35 | 11.075661 | 11.075653 | 8.12e-06 | 0.000 |
models.itu837.rainfall_rate | 28.717 | 77.30 | 0.01 | 63.618888 | 63.597246 | 2.16e-02 | 0.034 |
models.itu837.rainfall_rate | 28.717 | 77.30 | 0.10 | 16.538574 | 16.538493 | 8.04e-05 | 0.000 |
models.itu837.rainfall_rate | 28.717 | 77.30 | 0.15 | 12.046514 | 12.046479 | 3.49e-05 | 0.000 |
models.itu837.rainfall_rate | 28.717 | 77.30 | 0.30 | 6.216006 | 6.215967 | 3.87e-05 | 0.001 |
models.itu837.rainfall_rate | 28.717 | 77.30 | 0.35 | 5.196098 | 5.196132 | -3.41e-05 | -0.001 |
models.itu837.rainfall_rate | 33.940 | 18.43 | 0.01 | 27.135868 | 27.134966 | 9.02e-04 | 0.003 |
models.itu837.rainfall_rate | 33.940 | 18.43 | 0.10 | 7.431932 | 7.431947 | -1.49e-05 | -0.000 |
models.itu837.rainfall_rate | 33.940 | 18.43 | 0.15 | 5.530319 | 5.530275 | 4.32e-05 | 0.001 |
models.itu837.rainfall_rate | 33.940 | 18.43 | 0.30 | 3.035066 | 3.035061 | 4.97e-06 | 0.000 |
models.itu837.rainfall_rate | 33.940 | 18.43 | 0.35 | 2.592761 | 2.592780 | -1.91e-05 | -0.001 |
models.itu837.rainfall_rate | 41.900 | 12.49 | 0.01 | 33.936232 | 33.936232 | -7.11e-15 | -0.000 |
models.itu837.rainfall_rate | 41.900 | 12.49 | 0.10 | 11.197983 | 11.197917 | 6.59e-05 | 0.001 |
models.itu837.rainfall_rate | 41.900 | 12.49 | 0.15 | 8.884726 | 8.884735 | -9.69e-06 | -0.000 |
models.itu837.rainfall_rate | 41.900 | 12.49 | 0.30 | 5.753563 | 5.753540 | 2.30e-05 | 0.000 |
models.itu837.rainfall_rate | 41.900 | 12.49 | 0.35 | 5.180588 | 5.180605 | -1.65e-05 | -0.000 |
models.itu837.rainfall_rate | 51.500 | -0.14 | 0.01 | 26.480520 | 26.480520 | -3.55e-15 | -0.000 |
models.itu837.rainfall_rate | 51.500 | -0.14 | 0.10 | 8.992471 | 8.992486 | -1.45e-05 | -0.000 |
models.itu837.rainfall_rate | 51.500 | -0.14 | 0.15 | 7.173693 | 7.173695 | -1.55e-06 | -0.000 |
models.itu837.rainfall_rate | 51.500 | -0.14 | 0.30 | 4.690336 | 4.690312 | 2.44e-05 | 0.001 |
models.itu837.rainfall_rate | 51.500 | -0.14 | 0.35 | 4.232586 | 4.232578 | 8.03e-06 | 0.000 |
Function rainfall_rate¶
The table below contains the results of testing function rainfall_rate
.
The test cases were extracted from spreadsheet ITURP837-7_rainfall_rate_R001.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.133 # (°N)
lon = 101.7 # (°E)
p = 0.01 # (%)
# Make call to test-function rainfall_rate
itur_val = itur.models.itu837.rainfall_rate(lat=lat, lon=lon, p=p)
# Compute error with respect to value in ITU example file
ITU_example_val = 99.1481136 # (mm/hr)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | p (%) | ITU Validation (mm/hr) | ITU-Rpy Result (mm/hr) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|
models.itu837.rainfall_rate | 3.133 | 101.70 | 0.01 | 99.148114 | 99.148114 | 2.84e-14 | 0.000 |
models.itu837.rainfall_rate | 22.900 | -43.23 | 0.01 | 50.639304 | 50.639304 | -2.13e-14 | -0.000 |
models.itu837.rainfall_rate | 23.000 | 30.00 | 0.01 | 0.000000 | 0.000000 | 0.00e+00 | 0.000 |
models.itu837.rainfall_rate | 25.780 | -80.22 | 0.01 | 78.298293 | 78.298293 | -1.42e-13 | -0.000 |
models.itu837.rainfall_rate | 28.717 | 77.30 | 0.01 | 63.597246 | 63.597246 | 7.11e-14 | 0.000 |
models.itu837.rainfall_rate | 33.940 | 18.43 | 0.01 | 27.134966 | 27.134966 | 3.55e-15 | 0.000 |
models.itu837.rainfall_rate | 41.900 | 12.49 | 0.01 | 33.936232 | 33.936232 | -7.11e-15 | -0.000 |
models.itu837.rainfall_rate | 51.500 | -0.14 | 0.01 | 26.480520 | 26.480520 | -3.55e-15 | -0.000 |
Function rainfall_probability¶
The table below contains the results of testing function rainfall_probability
.
The test cases were extracted from spreadsheet ITURP837-7_rainfall_rate_probability.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.133 # (°N)
lon = 101.7 # (°E)
# Make call to test-function rainfall_probability
itur_val = itur.models.itu837.rainfall_probability(lat=lat, lon=lon)
# Compute error with respect to value in ITU example file
ITU_example_val = 4.53654368 # (%)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | ITU Validation (%) | ITU-Rpy Result (%) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|
models.itu837.rainfall_probability | 3.133 | 101.70 | 4.536544 | 4.536544 | -4.98e-09 | -0.000 |
models.itu837.rainfall_probability | 22.900 | -43.23 | 1.417734 | 1.417734 | 1.05e-09 | 0.000 |
models.itu837.rainfall_probability | 23.000 | 30.00 | 0.000519 | 0.000519 | -1.14e-09 | -0.000 |
models.itu837.rainfall_probability | 25.780 | -80.22 | 2.907852 | 2.907852 | -4.20e-10 | -0.000 |
models.itu837.rainfall_probability | 28.717 | 77.30 | 1.070894 | 1.070894 | -3.49e-09 | -0.000 |
models.itu837.rainfall_probability | 33.940 | 18.43 | 1.275674 | 1.275674 | 9.22e-10 | 0.000 |
models.itu837.rainfall_probability | 41.900 | 12.49 | 5.269719 | 5.269719 | -1.87e-09 | -0.000 |
models.itu837.rainfall_probability | 51.500 | -0.14 | 5.361510 | 5.361510 | -3.71e-09 | -0.000 |
Validation results ITU-R P.838-3¶
This page contains the validation examples for Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in prediction methods.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function rain_specific_attenuation¶
The table below contains the results of testing function rain_specific_attenuation
.
The test cases were extracted from spreadsheet ITURP838-3_rain_specific_attenuation.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
el = 31.07699124 # (°)
f = 14.25 # (GHz)
R = 26.48052 # (mm/h)
tau = 0.0 # t(°)
# Make call to test-function rain_specific_attenuation
itur_val = itur.models.itu838.rain_specific_attenuation(el=el, f=f, R=R, tau=tau)
# Compute error with respect to value in ITU example file
ITU_example_val = 1.58130839 # (dB/km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | el (°) | f (GHz) | R (mm/h) | tau t(°) | ITU Validation (dB/km) | ITU-Rpy Result (dB/km) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|
models.itu838.rain_specific_attenuation | 31.076991 | 14.25 | 26.480520 | 0.0 | 1.581308 | 1.581308 | -3.66e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 40.232036 | 14.25 | 33.936232 | 0.0 | 2.061732 | 2.061732 | -1.25e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 46.359693 | 14.25 | 27.135868 | 0.0 | 1.592084 | 1.592084 | 6.90e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 31.076991 | 14.25 | 26.480520 | 0.0 | 1.581308 | 1.581308 | -3.66e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 40.232036 | 14.25 | 33.936232 | 0.0 | 2.061732 | 2.061732 | -1.25e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 46.359693 | 14.25 | 27.135868 | 0.0 | 1.592084 | 1.592084 | 6.90e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 31.076991 | 14.25 | 26.480520 | 0.0 | 1.581308 | 1.581308 | -3.66e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 40.232036 | 14.25 | 33.936232 | 0.0 | 2.061732 | 2.061732 | -1.25e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 46.359693 | 14.25 | 27.135868 | 0.0 | 1.592084 | 1.592084 | 6.90e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 31.076991 | 14.25 | 26.480520 | 0.0 | 1.581308 | 1.581308 | -3.66e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 40.232036 | 14.25 | 33.936232 | 0.0 | 2.061732 | 2.061732 | -1.25e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 46.359693 | 14.25 | 27.135868 | 0.0 | 1.592084 | 1.592084 | 6.90e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 31.076991 | 29.00 | 26.480520 | 0.0 | 5.021802 | 5.021802 | 9.37e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 40.232036 | 29.00 | 33.936232 | 0.0 | 6.278460 | 6.278460 | 3.08e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 46.359693 | 29.00 | 27.135868 | 0.0 | 5.031355 | 5.031355 | -3.63e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 31.076991 | 29.00 | 26.480520 | 0.0 | 5.021802 | 5.021802 | 9.37e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 40.232036 | 29.00 | 33.936232 | 0.0 | 6.278460 | 6.278460 | 3.08e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 46.359693 | 29.00 | 27.135868 | 0.0 | 5.031355 | 5.031355 | -3.63e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 31.076991 | 29.00 | 26.480520 | 0.0 | 5.021802 | 5.021802 | 9.37e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 40.232036 | 29.00 | 33.936232 | 0.0 | 6.278460 | 6.278460 | 3.08e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 46.359693 | 29.00 | 27.135868 | 0.0 | 5.031355 | 5.031355 | -3.63e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 31.076991 | 29.00 | 26.480520 | 0.0 | 5.021802 | 5.021802 | 9.37e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 40.232036 | 29.00 | 33.936232 | 0.0 | 6.278460 | 6.278460 | 3.08e-10 | 0.000 |
models.itu838.rain_specific_attenuation | 46.359693 | 29.00 | 27.135868 | 0.0 | 5.031355 | 5.031355 | -3.63e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 22.278335 | 14.25 | 50.639304 | 0.0 | 3.321396 | 3.321396 | 2.32e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 52.678985 | 14.25 | 78.299499 | 0.0 | 5.115035 | 5.115035 | -3.10e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 22.278335 | 14.25 | 50.639304 | 0.0 | 3.321396 | 3.321396 | 2.32e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 52.678985 | 14.25 | 78.299499 | 0.0 | 5.115035 | 5.115035 | -3.10e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 22.278335 | 14.25 | 50.639304 | 0.0 | 3.321396 | 3.321396 | 2.32e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 52.678985 | 14.25 | 78.299499 | 0.0 | 5.115035 | 5.115035 | -3.10e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 22.278335 | 14.25 | 50.639304 | 0.0 | 3.321396 | 3.321396 | 2.32e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 52.678985 | 14.25 | 78.299499 | 0.0 | 5.115035 | 5.115035 | -3.10e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 22.278335 | 29.00 | 50.639304 | 0.0 | 9.424302 | 9.424302 | 1.87e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 52.678985 | 29.00 | 78.299499 | 0.0 | 13.592901 | 13.592901 | -3.74e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 22.278335 | 29.00 | 50.639304 | 0.0 | 9.424302 | 9.424302 | 1.87e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 52.678985 | 29.00 | 78.299499 | 0.0 | 13.592901 | 13.592901 | -3.74e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 22.278335 | 29.00 | 50.639304 | 0.0 | 9.424302 | 9.424302 | 1.87e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 52.678985 | 29.00 | 78.299499 | 0.0 | 13.592901 | 13.592901 | -3.74e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 22.278335 | 29.00 | 50.639304 | 0.0 | 9.424302 | 9.424302 | 1.87e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 52.678985 | 29.00 | 78.299499 | 0.0 | 13.592901 | 13.592901 | -3.74e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 48.241171 | 14.25 | 63.626681 | 90.0 | 3.729013 | 3.729013 | 4.82e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 85.804596 | 14.25 | 99.135590 | 90.0 | 6.340646 | 6.340646 | -2.31e-10 | -0.000 |
models.itu838.rain_specific_attenuation | 20.143358 | 14.25 | 42.910072 | 90.0 | 2.350323 | 2.350323 | -3.09e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 48.241171 | 14.25 | 63.626681 | 90.0 | 3.729013 | 3.729013 | 4.82e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 85.804596 | 14.25 | 99.135590 | 90.0 | 6.340646 | 6.340646 | -2.31e-10 | -0.000 |
models.itu838.rain_specific_attenuation | 20.143358 | 14.25 | 42.910072 | 90.0 | 2.350323 | 2.350323 | -3.09e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 48.241171 | 14.25 | 63.626681 | 90.0 | 3.729013 | 3.729013 | 4.82e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 85.804596 | 14.25 | 99.135590 | 90.0 | 6.340646 | 6.340646 | -2.31e-10 | -0.000 |
models.itu838.rain_specific_attenuation | 20.143358 | 14.25 | 42.910072 | 90.0 | 2.350323 | 2.350323 | -3.09e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 48.241171 | 14.25 | 63.626681 | 90.0 | 3.729013 | 3.729013 | 4.82e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 85.804596 | 14.25 | 99.135590 | 90.0 | 6.340646 | 6.340646 | -2.31e-10 | -0.000 |
models.itu838.rain_specific_attenuation | 20.143358 | 14.25 | 42.910072 | 90.0 | 2.350323 | 2.350323 | -3.09e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 48.241171 | 29.00 | 63.626681 | 90.0 | 10.286992 | 10.286992 | 3.92e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 85.804596 | 29.00 | 99.135590 | 90.0 | 16.318369 | 16.318369 | -2.17e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 20.143358 | 29.00 | 42.910072 | 90.0 | 6.833646 | 6.833646 | 2.75e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 48.241171 | 29.00 | 63.626681 | 90.0 | 10.286992 | 10.286992 | 3.92e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 85.804596 | 29.00 | 99.135590 | 90.0 | 16.318369 | 16.318369 | -2.17e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 20.143358 | 29.00 | 42.910072 | 90.0 | 6.833646 | 6.833646 | 2.75e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 48.241171 | 29.00 | 63.626681 | 90.0 | 10.286992 | 10.286992 | 3.92e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 85.804596 | 29.00 | 99.135590 | 90.0 | 16.318369 | 16.318369 | -2.17e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 20.143358 | 29.00 | 42.910072 | 90.0 | 6.833646 | 6.833646 | 2.75e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 48.241171 | 29.00 | 63.626681 | 90.0 | 10.286992 | 10.286992 | 3.92e-09 | 0.000 |
models.itu838.rain_specific_attenuation | 85.804596 | 29.00 | 99.135590 | 90.0 | 16.318369 | 16.318369 | -2.17e-09 | -0.000 |
models.itu838.rain_specific_attenuation | 20.143358 | 29.00 | 42.910072 | 90.0 | 6.833646 | 6.833646 | 2.75e-09 | 0.000 |
Validation results ITU-R P.839-4¶
This page contains the validation examples for Recommendation ITU-R P.839-4: Rain height model for prediction methods.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function isoterm_0¶
The table below contains the results of testing function isoterm_0
.
The test cases were extracted from spreadsheet ITURP839-4_rain_height.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.133 # (°N)
lon = 101.7 # (°E)
# Make call to test-function isoterm_0
itur_val = itur.models.itu839.isoterm_0(lat=lat, lon=lon)
# Compute error with respect to value in ITU example file
ITU_example_val = 4.5979744 # (km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | ITU Validation (km) | ITU-Rpy Result (km) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|
models.itu839.isoterm_0 | 3.133 | 101.70 | 4.597974 | 4.597974 | 8.88e-16 | 0.000 |
models.itu839.isoterm_0 | 22.900 | -43.23 | 3.798779 | 3.798779 | 3.33e-09 | 0.000 |
models.itu839.isoterm_0 | 23.000 | 30.00 | 4.168000 | 4.168000 | 0.00e+00 | 0.000 |
models.itu839.isoterm_0 | 25.780 | -80.22 | 4.209461 | 4.209461 | -3.33e-09 | -0.000 |
models.itu839.isoterm_0 | 28.717 | 77.30 | 4.898204 | 4.898204 | -4.44e-09 | -0.000 |
models.itu839.isoterm_0 | 33.940 | 18.43 | 2.203303 | 2.203303 | 4.44e-09 | 0.000 |
models.itu839.isoterm_0 | 41.900 | 12.49 | 2.687493 | 2.687493 | -3.33e-09 | -0.000 |
models.itu839.isoterm_0 | 51.500 | -0.14 | 2.092733 | 2.092733 | -3.33e-09 | -0.000 |
Function rain_height¶
The table below contains the results of testing function rain_height
.
The test cases were extracted from spreadsheet ITURP839-4_rain_height.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.133 # (°N)
lon = 101.7 # (°E)
# Make call to test-function rain_height
itur_val = itur.models.itu839.rain_height(lat=lat, lon=lon)
# Compute error with respect to value in ITU example file
ITU_example_val = 4.9579744 # (km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | ITU Validation (km) | ITU-Rpy Result (km) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|
models.itu839.rain_height | 3.133 | 101.70 | 4.957974 | 4.957974 | 8.88e-16 | 0.000 |
models.itu839.rain_height | 22.900 | -43.23 | 4.158779 | 4.158779 | 3.33e-09 | 0.000 |
models.itu839.rain_height | 23.000 | 30.00 | 4.528000 | 4.528000 | -8.88e-16 | -0.000 |
models.itu839.rain_height | 25.780 | -80.22 | 4.569461 | 4.569461 | -3.33e-09 | -0.000 |
models.itu839.rain_height | 28.717 | 77.30 | 5.258204 | 5.258204 | -4.44e-09 | -0.000 |
models.itu839.rain_height | 33.940 | 18.43 | 2.563303 | 2.563303 | 4.44e-09 | 0.000 |
models.itu839.rain_height | 41.900 | 12.49 | 3.047493 | 3.047493 | -3.33e-09 | -0.000 |
models.itu839.rain_height | 51.500 | -0.14 | 2.452733 | 2.452733 | -3.33e-09 | -0.000 |
Validation results ITU-R P.840-8¶
This page contains the validation examples for Recommendation ITU-R P.840-8: Attenuation due to clouds and fog.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function cloud_attenuation¶
The table below contains the results of testing function cloud_attenuation
.
The test cases were extracted from spreadsheet ITURP840-8_cloud_attenuation.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 51.5 # (°N)
lon = -0.14 # (°E)
f = 14.25 # (GHz)
el = 31.07699124 # (°)
p = 1.0 # (%)
# Make call to test-function cloud_attenuation
itur_val = itur.models.itu840.cloud_attenuation(lat=lat, lon=lon, f=f, el=el, p=p)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.45516982 # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | f (GHz) | el (°) | p (%) | ITU Validation (dB) | ITU-Rpy Result (dB) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|---|
models.itu840.cloud_attenuation | 51.50 | -0.14 | 14.25 | 31.076991 | 1.0 | 0.455170 | 0.455170 | -4.40e-09 | -0.000 |
models.itu840.cloud_attenuation | 41.90 | 12.49 | 14.25 | 40.232036 | 1.0 | 0.263385 | 0.263385 | -1.16e-09 | -0.000 |
models.itu840.cloud_attenuation | 33.94 | 18.43 | 14.25 | 46.359693 | 1.0 | 0.187794 | 0.187794 | 1.50e-09 | 0.000 |
models.itu840.cloud_attenuation | 51.50 | -0.14 | 14.25 | 31.076991 | 0.5 | 0.534571 | 0.534571 | 1.78e-09 | 0.000 |
models.itu840.cloud_attenuation | 41.90 | 12.49 | 14.25 | 40.232036 | 0.5 | 0.323039 | 0.323039 | 4.83e-09 | 0.000 |
models.itu840.cloud_attenuation | 33.94 | 18.43 | 14.25 | 46.359693 | 0.5 | 0.239238 | 0.239238 | 3.21e-09 | 0.000 |
models.itu840.cloud_attenuation | 51.50 | -0.14 | 14.25 | 31.076991 | 0.3 | 0.591367 | 0.591367 | -4.62e-10 | -0.000 |
models.itu840.cloud_attenuation | 41.90 | 12.49 | 14.25 | 40.232036 | 0.3 | 0.361147 | 0.361147 | -3.25e-09 | -0.000 |
models.itu840.cloud_attenuation | 33.94 | 18.43 | 14.25 | 46.359693 | 0.3 | 0.287229 | 0.287229 | -2.87e-09 | -0.000 |
models.itu840.cloud_attenuation | 51.50 | -0.14 | 14.25 | 31.076991 | 0.2 | 0.624487 | 0.624487 | 1.33e-09 | 0.000 |
models.itu840.cloud_attenuation | 41.90 | 12.49 | 14.25 | 40.232036 | 0.2 | 0.388640 | 0.388640 | -3.95e-09 | -0.000 |
models.itu840.cloud_attenuation | 33.94 | 18.43 | 14.25 | 46.359693 | 0.2 | 0.320697 | 0.320697 | 1.84e-09 | 0.000 |
models.itu840.cloud_attenuation | 51.50 | -0.14 | 29.00 | 31.076991 | 1.0 | 1.772469 | 1.772469 | -2.75e-09 | -0.000 |
models.itu840.cloud_attenuation | 41.90 | 12.49 | 29.00 | 40.232036 | 1.0 | 1.025643 | 1.025643 | -3.42e-09 | -0.000 |
models.itu840.cloud_attenuation | 33.94 | 18.43 | 29.00 | 46.359693 | 1.0 | 0.731286 | 0.731286 | 3.54e-09 | 0.000 |
models.itu840.cloud_attenuation | 51.50 | -0.14 | 29.00 | 31.076991 | 0.5 | 2.081665 | 2.081665 | 1.03e-09 | 0.000 |
models.itu840.cloud_attenuation | 41.90 | 12.49 | 29.00 | 40.232036 | 0.5 | 1.257939 | 1.257939 | 2.14e-09 | 0.000 |
models.itu840.cloud_attenuation | 33.94 | 18.43 | 29.00 | 46.359693 | 0.5 | 0.931612 | 0.931612 | 1.90e-09 | 0.000 |
models.itu840.cloud_attenuation | 51.50 | -0.14 | 29.00 | 31.076991 | 0.3 | 2.302831 | 2.302831 | -2.05e-10 | -0.000 |
models.itu840.cloud_attenuation | 41.90 | 12.49 | 29.00 | 40.232036 | 0.3 | 1.406338 | 1.406338 | 4.26e-11 | 0.000 |
models.itu840.cloud_attenuation | 33.94 | 18.43 | 29.00 | 46.359693 | 0.3 | 1.118494 | 1.118494 | -4.99e-09 | -0.000 |
models.itu840.cloud_attenuation | 51.50 | -0.14 | 29.00 | 31.076991 | 0.2 | 2.431803 | 2.431803 | -3.04e-09 | -0.000 |
models.itu840.cloud_attenuation | 41.90 | 12.49 | 29.00 | 40.232036 | 0.2 | 1.513395 | 1.513395 | 4.73e-09 | 0.000 |
models.itu840.cloud_attenuation | 33.94 | 18.43 | 29.00 | 46.359693 | 0.2 | 1.248820 | 1.248820 | -1.27e-09 | -0.000 |
models.itu840.cloud_attenuation | 22.90 | -43.23 | 14.25 | 22.278335 | 1.0 | 0.541833 | 0.541833 | -1.26e-09 | -0.000 |
models.itu840.cloud_attenuation | 25.78 | -80.22 | 14.25 | 52.678985 | 1.0 | 0.533175 | 0.533175 | -2.16e-09 | -0.000 |
models.itu840.cloud_attenuation | 22.90 | -43.23 | 14.25 | 22.278335 | 0.5 | 0.857468 | 0.857468 | -4.54e-09 | -0.000 |
models.itu840.cloud_attenuation | 25.78 | -80.22 | 14.25 | 52.678985 | 0.5 | 0.639566 | 0.639566 | -3.07e-09 | -0.000 |
models.itu840.cloud_attenuation | 22.90 | -43.23 | 14.25 | 22.278335 | 0.3 | 1.056028 | 1.056028 | -2.62e-09 | -0.000 |
models.itu840.cloud_attenuation | 25.78 | -80.22 | 14.25 | 52.678985 | 0.3 | 0.722669 | 0.722669 | 1.78e-09 | 0.000 |
models.itu840.cloud_attenuation | 22.90 | -43.23 | 14.25 | 22.278335 | 0.2 | 1.208442 | 1.208442 | 5.78e-10 | 0.000 |
models.itu840.cloud_attenuation | 25.78 | -80.22 | 14.25 | 52.678985 | 0.2 | 0.760938 | 0.760938 | 3.84e-09 | 0.000 |
models.itu840.cloud_attenuation | 22.90 | -43.23 | 29.00 | 22.278335 | 1.0 | 2.109942 | 2.109942 | -3.44e-09 | -0.000 |
models.itu840.cloud_attenuation | 25.78 | -80.22 | 29.00 | 52.678985 | 1.0 | 2.076228 | 2.076228 | 2.71e-09 | 0.000 |
models.itu840.cloud_attenuation | 22.90 | -43.23 | 29.00 | 22.278335 | 0.5 | 3.339051 | 3.339051 | -3.20e-09 | -0.000 |
models.itu840.cloud_attenuation | 25.78 | -80.22 | 29.00 | 52.678985 | 0.5 | 2.490524 | 2.490524 | -2.60e-09 | -0.000 |
models.itu840.cloud_attenuation | 22.90 | -43.23 | 29.00 | 22.278335 | 0.3 | 4.112259 | 4.112259 | 5.50e-10 | 0.000 |
models.itu840.cloud_attenuation | 25.78 | -80.22 | 29.00 | 52.678985 | 0.3 | 2.814133 | 2.814133 | -3.98e-09 | -0.000 |
models.itu840.cloud_attenuation | 22.90 | -43.23 | 29.00 | 22.278335 | 0.2 | 4.705774 | 4.705774 | -1.21e-09 | -0.000 |
models.itu840.cloud_attenuation | 25.78 | -80.22 | 29.00 | 52.678985 | 0.2 | 2.963156 | 2.963156 | -2.75e-09 | -0.000 |
models.itu840.cloud_attenuation | 28.72 | 77.30 | 14.25 | 48.241171 | 1.0 | 0.685601 | 0.685601 | -4.38e-09 | -0.000 |
models.itu840.cloud_attenuation | 3.13 | 101.70 | 14.25 | 85.804596 | 1.0 | 0.622148 | 0.622148 | 4.81e-09 | 0.000 |
models.itu840.cloud_attenuation | 9.05 | 38.70 | 14.25 | 20.143358 | 1.0 | 0.657652 | 0.657652 | 2.05e-09 | 0.000 |
models.itu840.cloud_attenuation | 28.72 | 77.30 | 14.25 | 48.241171 | 0.5 | 0.831794 | 0.831794 | 2.57e-09 | 0.000 |
models.itu840.cloud_attenuation | 3.13 | 101.70 | 14.25 | 85.804596 | 0.5 | 0.654899 | 0.654899 | -2.35e-09 | -0.000 |
models.itu840.cloud_attenuation | 9.05 | 38.70 | 14.25 | 20.143358 | 0.5 | 0.718165 | 0.718165 | -1.13e-09 | -0.000 |
models.itu840.cloud_attenuation | 28.72 | 77.30 | 14.25 | 48.241171 | 0.3 | 0.907731 | 0.907731 | -3.08e-09 | -0.000 |
models.itu840.cloud_attenuation | 3.13 | 101.70 | 14.25 | 85.804596 | 0.3 | 0.677159 | 0.677159 | -3.75e-09 | -0.000 |
models.itu840.cloud_attenuation | 9.05 | 38.70 | 14.25 | 20.143358 | 0.3 | 0.752449 | 0.752449 | 2.71e-09 | 0.000 |
models.itu840.cloud_attenuation | 28.72 | 77.30 | 14.25 | 48.241171 | 0.2 | 0.958302 | 0.958302 | 2.14e-09 | 0.000 |
models.itu840.cloud_attenuation | 3.13 | 101.70 | 14.25 | 85.804596 | 0.2 | 0.690306 | 0.690306 | -1.60e-09 | -0.000 |
models.itu840.cloud_attenuation | 9.05 | 38.70 | 14.25 | 20.143358 | 0.2 | 0.771120 | 0.771120 | 1.80e-09 | 0.000 |
models.itu840.cloud_attenuation | 28.72 | 77.30 | 29.00 | 48.241171 | 1.0 | 2.669786 | 2.669786 | -4.93e-09 | -0.000 |
models.itu840.cloud_attenuation | 3.13 | 101.70 | 29.00 | 85.804596 | 1.0 | 2.422697 | 2.422697 | -1.13e-09 | -0.000 |
models.itu840.cloud_attenuation | 9.05 | 38.70 | 29.00 | 20.143358 | 1.0 | 2.560952 | 2.560952 | 3.84e-09 | 0.000 |
models.itu840.cloud_attenuation | 28.72 | 77.30 | 29.00 | 48.241171 | 0.5 | 3.239076 | 3.239076 | -3.17e-09 | -0.000 |
models.itu840.cloud_attenuation | 3.13 | 101.70 | 29.00 | 85.804596 | 0.5 | 2.550232 | 2.550232 | 3.09e-09 | 0.000 |
models.itu840.cloud_attenuation | 9.05 | 38.70 | 29.00 | 20.143358 | 0.5 | 2.796592 | 2.796592 | -2.58e-09 | -0.000 |
models.itu840.cloud_attenuation | 28.72 | 77.30 | 29.00 | 48.241171 | 0.3 | 3.534779 | 3.534779 | 3.05e-09 | 0.000 |
models.itu840.cloud_attenuation | 3.13 | 101.70 | 29.00 | 85.804596 | 0.3 | 2.636914 | 2.636914 | -1.37e-09 | -0.000 |
models.itu840.cloud_attenuation | 9.05 | 38.70 | 29.00 | 20.143358 | 0.3 | 2.930099 | 2.930099 | -2.97e-09 | -0.000 |
models.itu840.cloud_attenuation | 28.72 | 77.30 | 29.00 | 48.241171 | 0.2 | 3.731709 | 3.731709 | -1.49e-09 | -0.000 |
models.itu840.cloud_attenuation | 3.13 | 101.70 | 29.00 | 85.804596 | 0.2 | 2.688109 | 2.688109 | 3.06e-09 | 0.000 |
models.itu840.cloud_attenuation | 9.05 | 38.70 | 29.00 | 20.143358 | 0.2 | 3.002805 | 3.002805 | -3.77e-09 | -0.000 |
Function columnar_content_reduced_liquid¶
The table below contains the results of testing function columnar_content_reduced_liquid
.
The test cases were extracted from spreadsheet ITURP840-8_columnar_content_reduced_liquid.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.13 # (°N)
lon = 101.7 # (°E)
p = 0.2 # (%)
# Make call to test-function columnar_content_reduced_liquid
itur_val = itur.models.itu840.columnar_content_reduced_liquid(lat=lat, lon=lon, p=p)
# Compute error with respect to value in ITU example file
ITU_example_val = 3.70165196 # (kg/m2)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | p (%) | ITU Validation (kg/m2) | ITU-Rpy Result (kg/m2) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|
models.itu840.columnar_content_reduced_liquid | 3.130 | 101.70 | 0.20 | 3.701652 | 3.701652 | -4.09e-09 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 3.130 | 101.70 | 0.30 | 3.631154 | 3.631154 | -3.73e-09 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 3.130 | 101.70 | 0.50 | 3.511788 | 3.511788 | 3.47e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 3.130 | 101.70 | 1.00 | 3.336166 | 3.336166 | 1.02e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 3.133 | 101.70 | 0.10 | 3.805251 | 3.805251 | 3.56e-11 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 3.133 | 101.70 | 0.15 | 3.744512 | 3.744512 | 3.95e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 3.133 | 101.70 | 0.30 | 3.630958 | 3.630958 | 2.67e-11 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 3.133 | 101.70 | 0.35 | 3.594946 | 3.594946 | 2.16e-11 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 9.050 | 38.70 | 0.20 | 1.427798 | 1.427798 | 4.00e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 9.050 | 38.70 | 0.30 | 1.393227 | 1.393227 | 6.67e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 9.050 | 38.70 | 0.50 | 1.329746 | 1.329746 | -8.89e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 9.050 | 38.70 | 1.00 | 1.217702 | 1.217702 | 6.67e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 22.900 | -43.23 | 0.10 | 2.829932 | 2.829932 | -1.85e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 22.900 | -43.23 | 0.15 | 2.615428 | 2.615428 | 3.33e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 22.900 | -43.23 | 0.20 | 2.463236 | 2.463236 | 4.44e-11 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 22.900 | -43.23 | 0.30 | 2.152561 | 2.152561 | -1.08e-09 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 22.900 | -43.23 | 0.30 | 2.152561 | 2.152561 | -8.15e-11 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 22.900 | -43.23 | 0.35 | 2.030425 | 2.030425 | 2.60e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 22.900 | -43.23 | 0.50 | 1.747825 | 1.747825 | -3.48e-09 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 22.900 | -43.23 | 1.00 | 1.104449 | 1.104449 | 2.56e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 23.000 | 30.00 | 0.10 | 0.443821 | 0.443821 | -3.33e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 23.000 | 30.00 | 0.15 | 0.367759 | 0.367759 | 2.17e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 23.000 | 30.00 | 0.30 | 0.252496 | 0.252496 | -3.70e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 23.000 | 30.00 | 0.35 | 0.230477 | 0.230477 | 3.46e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 25.780 | -80.22 | 0.10 | 3.529275 | 3.529275 | -2.79e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 25.780 | -80.22 | 0.15 | 3.368053 | 3.368053 | -4.33e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 25.780 | -80.22 | 0.20 | 3.253664 | 3.253664 | 1.87e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 25.780 | -80.22 | 0.30 | 3.090031 | 3.090031 | 3.33e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 25.780 | -80.22 | 0.30 | 3.090031 | 3.090031 | 3.33e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 25.780 | -80.22 | 0.35 | 2.982802 | 2.982802 | 3.91e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 25.780 | -80.22 | 0.50 | 2.734695 | 2.734695 | 1.38e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 25.780 | -80.22 | 1.00 | 2.279782 | 2.279782 | 2.55e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 28.717 | 77.30 | 0.10 | 4.230726 | 4.230726 | 3.11e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 28.717 | 77.30 | 0.15 | 4.004952 | 4.004952 | 4.59e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 28.717 | 77.30 | 0.30 | 3.641943 | 3.641943 | -2.65e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 28.717 | 77.30 | 0.35 | 3.550068 | 3.550068 | -3.85e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 28.720 | 77.30 | 0.20 | 3.843565 | 3.843565 | -6.32e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 28.720 | 77.30 | 0.30 | 3.640732 | 3.640732 | 3.95e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 28.720 | 77.30 | 0.50 | 3.336166 | 3.336166 | 1.80e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 28.720 | 77.30 | 1.00 | 2.749811 | 2.749811 | -4.63e-09 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 33.940 | 18.43 | 0.10 | 1.476286 | 1.476286 | 3.88e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 33.940 | 18.43 | 0.15 | 1.342662 | 1.342662 | -2.59e-11 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 33.940 | 18.43 | 0.20 | 1.247855 | 1.247855 | -2.32e-09 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 33.940 | 18.43 | 0.30 | 1.117630 | 1.117630 | 6.43e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 33.940 | 18.43 | 0.30 | 1.117630 | 1.117630 | -3.57e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 33.940 | 18.43 | 0.35 | 1.061279 | 1.061279 | -4.82e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 33.940 | 18.43 | 0.50 | 0.930893 | 0.930893 | -4.82e-09 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 33.940 | 18.43 | 1.00 | 0.730721 | 0.730721 | 4.04e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 41.900 | 12.49 | 0.10 | 1.498460 | 1.498460 | -1.43e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 41.900 | 12.49 | 0.15 | 1.411412 | 1.411412 | 4.24e-11 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 41.900 | 12.49 | 0.20 | 1.349650 | 1.349650 | -2.55e-09 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 41.900 | 12.49 | 0.30 | 1.254176 | 1.254176 | 2.37e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 41.900 | 12.49 | 0.30 | 1.254176 | 1.254176 | 3.65e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 41.900 | 12.49 | 0.35 | 1.214240 | 1.214240 | -1.65e-10 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 41.900 | 12.49 | 0.50 | 1.121834 | 1.121834 | 4.17e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 41.900 | 12.49 | 1.00 | 0.914672 | 0.914672 | -4.23e-09 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 51.500 | -0.14 | 0.10 | 1.903298 | 1.903298 | 3.83e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 51.500 | -0.14 | 0.15 | 1.803804 | 1.803804 | 9.72e-11 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 51.500 | -0.14 | 0.20 | 1.733211 | 1.733211 | -1.19e-09 | -0.000 |
models.itu840.columnar_content_reduced_liquid | 51.500 | -0.14 | 0.30 | 1.641289 | 1.641289 | 3.01e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 51.500 | -0.14 | 0.30 | 1.641289 | 1.641289 | 1.23e-11 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 51.500 | -0.14 | 0.35 | 1.593721 | 1.593721 | 1.46e-10 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 51.500 | -0.14 | 0.50 | 1.483659 | 1.483659 | 2.96e-09 | 0.000 |
models.itu840.columnar_content_reduced_liquid | 51.500 | -0.14 | 1.00 | 1.263286 | 1.263286 | 4.20e-10 | 0.000 |
Validation results ITU-R P.1510-1¶
This page contains the validation examples for Recommendation ITU-R P.1510-1: Mean surface temperature.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function surface_mean_temperature¶
The table below contains the results of testing function surface_mean_temperature
.
The test cases were extracted from spreadsheet ITURP1510-1_temperature.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 51.5 # (°N)
lon = -0.14 # (°E)
# Make call to test-function surface_mean_temperature
itur_val = itur.models.itu1510.surface_mean_temperature(lat=lat, lon=lon)
# Compute error with respect to value in ITU example file
ITU_example_val = 283.6108756 # (K)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | ITU Validation (K) | ITU-Rpy Result (K) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|
models.itu1510.surface_mean_temperature | 51.500 | -0.14 | 283.610876 | 283.610876 | 4.44e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 41.900 | 12.49 | 288.089737 | 288.089737 | 1.11e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 33.940 | 18.43 | 293.369680 | 293.369679 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 51.500 | -0.14 | 283.610876 | 283.610876 | 4.44e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 41.900 | 12.49 | 288.089737 | 288.089737 | 1.11e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 33.940 | 18.43 | 293.369680 | 293.369679 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 51.500 | -0.14 | 283.610876 | 283.610876 | 4.44e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 41.900 | 12.49 | 288.089737 | 288.089737 | 1.11e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 33.940 | 18.43 | 293.369680 | 293.369679 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 51.500 | -0.14 | 283.610876 | 283.610876 | 4.44e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 41.900 | 12.49 | 288.089737 | 288.089737 | 1.11e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 33.940 | 18.43 | 293.369680 | 293.369679 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 51.500 | -0.14 | 283.610876 | 283.610876 | 4.44e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 41.900 | 12.49 | 288.089737 | 288.089737 | 1.11e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 33.940 | 18.43 | 293.369680 | 293.369679 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 51.500 | -0.14 | 283.610876 | 283.610876 | 4.44e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 41.900 | 12.49 | 288.089737 | 288.089737 | 1.11e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 33.940 | 18.43 | 293.369680 | 293.369679 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 51.500 | -0.14 | 283.610876 | 283.610876 | 4.44e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 41.900 | 12.49 | 288.089737 | 288.089737 | 1.11e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 33.940 | 18.43 | 293.369680 | 293.369679 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 51.500 | -0.14 | 283.610876 | 283.610876 | 4.44e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 41.900 | 12.49 | 288.089737 | 288.089737 | 1.11e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 33.940 | 18.43 | 293.369680 | 293.369679 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 22.900 | -43.23 | 297.453541 | 297.453541 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 25.780 | -80.22 | 297.574654 | 297.574654 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 22.900 | -43.23 | 297.453541 | 297.453541 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 25.780 | -80.22 | 297.574654 | 297.574654 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 22.900 | -43.23 | 297.453541 | 297.453541 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 25.780 | -80.22 | 297.574654 | 297.574654 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 22.900 | -43.23 | 297.453541 | 297.453541 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 25.780 | -80.22 | 297.574654 | 297.574654 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 22.900 | -43.23 | 297.453541 | 297.453541 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 25.780 | -80.22 | 297.574654 | 297.574654 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 22.900 | -43.23 | 297.453541 | 297.453541 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 25.780 | -80.22 | 297.574654 | 297.574654 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 22.900 | -43.23 | 297.453541 | 297.453541 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 25.780 | -80.22 | 297.574654 | 297.574654 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 22.900 | -43.23 | 297.453541 | 297.453541 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 25.780 | -80.22 | 297.574654 | 297.574654 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 28.717 | 77.30 | 298.058499 | 298.058499 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 3.133 | 101.70 | 299.605408 | 299.605407 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 9.050 | 38.70 | 290.210093 | 290.210093 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 28.717 | 77.30 | 298.058499 | 298.058499 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 3.133 | 101.70 | 299.605408 | 299.605407 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 9.050 | 38.70 | 290.210093 | 290.210093 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 28.717 | 77.30 | 298.058499 | 298.058499 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 3.133 | 101.70 | 299.605408 | 299.605407 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 9.050 | 38.70 | 290.210093 | 290.210093 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 28.717 | 77.30 | 298.058499 | 298.058499 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 3.133 | 101.70 | 299.605408 | 299.605407 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 9.050 | 38.70 | 290.210093 | 290.210093 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 28.717 | 77.30 | 298.058499 | 298.058499 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 3.133 | 101.70 | 299.605408 | 299.605407 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 9.050 | 38.70 | 290.210093 | 290.210093 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 28.717 | 77.30 | 298.058499 | 298.058499 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 3.133 | 101.70 | 299.605408 | 299.605407 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 9.050 | 38.70 | 290.210093 | 290.210093 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 28.717 | 77.30 | 298.058499 | 298.058499 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 3.133 | 101.70 | 299.605408 | 299.605407 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 9.050 | 38.70 | 290.210093 | 290.210093 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 28.717 | 77.30 | 298.058499 | 298.058499 | -3.33e-08 | -0.000 |
models.itu1510.surface_mean_temperature | 3.133 | 101.70 | 299.605408 | 299.605407 | 3.33e-08 | 0.000 |
models.itu1510.surface_mean_temperature | 9.050 | 38.70 | 290.210093 | 290.210093 | -3.33e-08 | -0.000 |
Validation results ITU-R P.1511-1¶
This page contains the validation examples for Recommendation ITU-R P.1511-1: Topography for Earth-to-space propagation modelling.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function topographic_altitude¶
The table below contains the results of testing function topographic_altitude
.
The test cases were extracted from spreadsheet ITURP1511-1_topographic_altitude.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.133 # (°N)
lon = 101.7 # (°E)
# Make call to test-function topographic_altitude
itur_val = itur.models.itu1511.topographic_altitude(lat=lat, lon=lon)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.23610446 # (km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | ITU Validation (km) | ITU-Rpy Result (km) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|
models.itu1511.topographic_altitude | 3.133 | 101.70 | 0.051251 | 0.051246 | 5.67e-06 | 0.011 |
models.itu1511.topographic_altitude | 22.900 | -43.23 | 0.000000 | 0.000000 | -1.00e-09 | 0.000 |
models.itu1511.topographic_altitude | 23.000 | 30.00 | 0.187594 | 0.187595 | -1.35e-06 | -0.001 |
models.itu1511.topographic_altitude | 25.780 | -80.22 | 0.008617 | 0.008617 | 4.57e-07 | 0.005 |
models.itu1511.topographic_altitude | 28.717 | 77.30 | 0.209384 | 0.209383 | 4.70e-07 | 0.000 |
models.itu1511.topographic_altitude | 33.940 | 18.43 | 0.000000 | 0.000000 | -1.00e-09 | 0.000 |
models.itu1511.topographic_altitude | 41.900 | 12.49 | 0.046123 | 0.046124 | -1.17e-06 | -0.003 |
models.itu1511.topographic_altitude | 51.500 | -0.14 | 0.031383 | 0.031380 | 2.67e-06 | 0.009 |
models.itu1511.topographic_altitude | 9.050 | 38.70 | 2.539862 | 2.539859 | 2.45e-06 | 0.000 |
Validation results ITU-R P.1511-2¶
This page contains the validation examples for Recommendation ITU-R P.1511-2: Topography for Earth-to-space propagation modelling.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function topographic_altitude¶
The table below contains the results of testing function topographic_altitude
.
The test cases were extracted from spreadsheet ITURP1511-2_topographic_altitude.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
lat = 3.133 # (°N)
lon = 101.7 # (°E)
# Make call to test-function topographic_altitude
itur_val = itur.models.itu1511.topographic_altitude(lat=lat, lon=lon)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.05125146 # (km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | lat (°N) | lon (°E) | ITU Validation (km) | ITU-Rpy Result (km) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|
models.itu1511.topographic_altitude | 3.133 | 101.70 | 0.051251 | 0.051246 | 5.67e-06 | 0.011 |
models.itu1511.topographic_altitude | 22.900 | -43.23 | 0.000000 | 0.000000 | -1.00e-09 | 0.000 |
models.itu1511.topographic_altitude | 23.000 | 30.00 | 0.187594 | 0.187595 | -1.35e-06 | -0.001 |
models.itu1511.topographic_altitude | 25.780 | -80.22 | 0.008617 | 0.008617 | 4.57e-07 | 0.005 |
models.itu1511.topographic_altitude | 28.717 | 77.30 | 0.209384 | 0.209383 | 4.70e-07 | 0.000 |
models.itu1511.topographic_altitude | 33.940 | 18.43 | 0.000000 | 0.000000 | -1.00e-09 | 0.000 |
models.itu1511.topographic_altitude | 41.900 | 12.49 | 0.046123 | 0.046124 | -1.17e-06 | -0.003 |
models.itu1511.topographic_altitude | 51.500 | -0.14 | 0.031383 | 0.031380 | 2.67e-06 | 0.009 |
models.itu1511.topographic_altitude | 9.050 | 38.70 | 2.539862 | 2.539859 | 2.45e-06 | 0.000 |
Validation results ITU-R P.1623-1¶
This page contains the validation examples for Recommendation ITU-R P.1623-1: Prediction method of fade dynamics on Earth-space paths.
All test cases were extracted from the ITU Validation examples file (rev 5.1).
Functions tested
Function fade_duration_cummulative_probability¶
The table below contains the results of testing function fade_duration_cummulative_probability
.
The test cases were extracted from spreadsheet ITURP1623-1_fade_duration_params.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
D = 30.0 # (s)
A = 12.51 # (dB)
el = 20.33 # (°)
f = 30.0 # (GHz)
# Make call to test-function fade_duration_cummulative_probability
itur_val = itur.models.itu1623.fade_duration_cummulative_probability(D=D, A=A, el=el, f=f)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.923603873 #
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | D (s) | A (dB) | el (°) | f (GHz) | ITU Validation | ITU-Rpy Result | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|
models.itu1623.fade_duration_cummulative_probability | 30.0 | 12.51 | 20.33 | 30.0 | 0.923604 | 0.923604 | -4.27e-10 | -0.000 |
models.itu1623.fade_duration_cummulative_probability | 30.0 | 19.03 | 20.33 | 30.0 | 0.917391 | 0.917391 | -2.54e-10 | -0.000 |
models.itu1623.fade_duration_cummulative_probability | 10.0 | 7.64 | 20.33 | 14.5 | 0.973161 | 0.973161 | -4.50e-11 | -0.000 |
models.itu1623.fade_duration_cummulative_probability | 10.0 | 12.47 | 20.33 | 14.5 | 0.969723 | 0.969723 | -3.27e-10 | -0.000 |
models.itu1623.fade_duration_cummulative_probability | 1.0 | 11.59 | 37.63 | 39.6 | 0.971179 | 0.971179 | 2.26e-10 | 0.000 |
models.itu1623.fade_duration_cummulative_probability | 60.0 | 11.59 | 37.63 | 39.6 | 0.849674 | 0.849674 | -4.01e-10 | -0.000 |
models.itu1623.fade_duration_cummulative_probability | 300.0 | 11.59 | 37.63 | 39.6 | 0.705296 | 0.705296 | 6.77e-11 | 0.000 |
models.itu1623.fade_duration_cummulative_probability | 600.0 | 11.59 | 37.63 | 39.6 | 0.583576 | 0.583576 | 1.26e-10 | 0.000 |
models.itu1623.fade_duration_cummulative_probability | 1200.0 | 11.59 | 37.63 | 39.6 | 0.429033 | 0.429033 | 3.49e-10 | 0.000 |
models.itu1623.fade_duration_cummulative_probability | 1800.0 | 11.59 | 37.63 | 39.6 | 0.335491 | 0.335491 | 3.21e-10 | 0.000 |
models.itu1623.fade_duration_cummulative_probability | 3600.0 | 11.59 | 37.63 | 39.6 | 0.193791 | 0.193791 | 1.20e-11 | 0.000 |
Function fade_duration_number_fades¶
The table below contains the results of testing function fade_duration_number_fades
.
The test cases were extracted from spreadsheet ITURP1623-1_number_of_fades.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
D = 30.0 # (s)
A = 12.51 # (dB)
el = 20.33 # (°)
f = 30.0 # (GHz)
T_tot = 315576.0 # (s)
# Make call to test-function fade_duration_number_fades
itur_val = itur.models.itu1623.fade_duration_number_fades(D=D, A=A, el=el, f=f, T_tot=T_tot)
# Compute error with respect to value in ITU example file
ITU_example_val = 810.1909872 #
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | D (s) | A (dB) | el (°) | f (GHz) | T_tot (s) | ITU Validation | ITU-Rpy Result | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|---|
models.itu1623.fade_duration_number_fades | 30.0 | 12.51 | 20.33 | 30.0 | 315576.000000 | 810.190987 | 810.190987 | -1.74e-08 | -0.000 |
models.itu1623.fade_duration_number_fades | 30.0 | 19.03 | 20.33 | 30.0 | 94672.800000 | 263.482270 | 263.482270 | 2.50e-08 | 0.000 |
models.itu1623.fade_duration_number_fades | 10.0 | 7.64 | 20.33 | 14.5 | 31557.600000 | 187.739006 | 187.739006 | -2.75e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 10.0 | 12.47 | 20.33 | 14.5 | 9467.280000 | 63.671567 | 63.671567 | 4.49e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 1.0 | 11.59 | 37.63 | 39.6 | 157788.000000 | 3075.079280 | 3075.079280 | -3.93e-07 | -0.000 |
models.itu1623.fade_duration_number_fades | 60.0 | 11.59 | 37.63 | 39.6 | 157788.000000 | 267.324031 | 267.324031 | 7.27e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 300.0 | 11.59 | 37.63 | 39.6 | 157788.000000 | 97.965854 | 97.965854 | 3.98e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 600.0 | 11.59 | 37.63 | 39.6 | 157788.000000 | 52.729218 | 52.729218 | -4.59e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 1200.0 | 11.59 | 37.63 | 39.6 | 157788.000000 | 23.629371 | 23.629371 | -1.14e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 1800.0 | 11.59 | 37.63 | 39.6 | 157788.000000 | 13.506736 | 13.506736 | 3.38e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 3600.0 | 11.59 | 37.63 | 39.6 | 157788.000000 | 4.425827 | 4.425827 | -2.96e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 10.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 1668.160083 | 1668.160083 | -4.01e-07 | -0.000 |
models.itu1623.fade_duration_number_fades | 20.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 1349.672725 | 1349.672725 | -2.26e-08 | -0.000 |
models.itu1623.fade_duration_number_fades | 30.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 1187.975446 | 1187.975446 | -2.57e-07 | -0.000 |
models.itu1623.fade_duration_number_fades | 50.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 968.757536 | 968.757536 | -3.67e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 70.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 819.405465 | 819.405465 | 3.02e-08 | 0.000 |
models.itu1623.fade_duration_number_fades | 100.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 665.033744 | 665.033744 | 4.85e-08 | 0.000 |
models.itu1623.fade_duration_number_fades | 200.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 401.326405 | 401.326405 | 4.08e-08 | 0.000 |
models.itu1623.fade_duration_number_fades | 300.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 279.908154 | 279.908153 | 4.92e-08 | 0.000 |
models.itu1623.fade_duration_number_fades | 500.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 165.425843 | 165.425843 | 8.01e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 1000.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 70.889868 | 70.889868 | 2.78e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 2000.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 25.893644 | 25.893644 | 1.10e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 3000.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 13.314322 | 13.314322 | -3.24e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 5000.0 | 1.10 | 30.00 | 14.0 | 395486.300000 | 5.309439 | 5.309439 | 2.62e-11 | 0.000 |
models.itu1623.fade_duration_number_fades | 10.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 222.892169 | 222.892169 | 6.80e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 20.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 180.377199 | 180.377199 | -1.94e-08 | -0.000 |
models.itu1623.fade_duration_number_fades | 30.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 155.798554 | 155.798554 | 8.48e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 50.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 122.626410 | 122.626410 | -1.76e-08 | -0.000 |
models.itu1623.fade_duration_number_fades | 70.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 100.937752 | 100.937752 | -4.38e-08 | -0.000 |
models.itu1623.fade_duration_number_fades | 100.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 79.327733 | 79.327733 | -3.61e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 200.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 44.537187 | 44.537187 | -4.29e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 300.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 29.606190 | 29.606190 | 9.51e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 500.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 16.372608 | 16.372608 | -6.17e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 1000.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 6.345620 | 6.345620 | -2.44e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 2000.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 2.072255 | 2.072255 | -2.60e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 3000.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 0.992754 | 0.992754 | 2.88e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 5000.0 | 3.00 | 30.00 | 14.0 | 41152.940740 | 0.360170 | 0.360170 | -5.10e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 10.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 54.389922 | 54.389922 | -2.32e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 20.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 43.742582 | 43.742582 | -4.12e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 30.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 37.083143 | 37.083143 | -1.06e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 50.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 28.375238 | 28.375238 | -2.50e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 70.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 22.860953 | 22.860953 | 1.48e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 100.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 17.519794 | 17.519794 | -4.73e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 200.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 9.300675 | 9.300675 | -2.05e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 300.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 5.958399 | 5.958399 | -4.47e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 500.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 3.131783 | 3.131783 | 3.96e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 1000.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 1.124527 | 1.124527 | 2.15e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 2000.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 0.337402 | 0.337402 | -3.45e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 3000.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 0.153244 | 0.153244 | -2.99e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 5000.0 | 6.00 | 30.00 | 14.0 | 8439.016398 | 0.051782 | 0.051782 | -1.41e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 10.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 21.939310 | 21.939310 | -2.27e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 20.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 17.506532 | 17.506532 | -2.88e-09 | -0.000 |
models.itu1623.fade_duration_number_fades | 30.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 14.663494 | 14.663494 | -4.45e-11 | -0.000 |
models.itu1623.fade_duration_number_fades | 50.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 11.019315 | 11.019315 | 2.95e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 70.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 8.757618 | 8.757618 | 4.85e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 100.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 6.605381 | 6.605381 | -6.27e-11 | -0.000 |
models.itu1623.fade_duration_number_fades | 200.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 3.385196 | 3.385196 | 6.00e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 300.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 2.119102 | 2.119102 | 1.39e-11 | 0.000 |
models.itu1623.fade_duration_number_fades | 500.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 1.079042 | 1.079042 | -2.46e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 1000.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 0.369475 | 0.369475 | 3.28e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 2000.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 0.105187 | 0.105187 | -4.43e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 3000.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 0.046225 | 0.046225 | 4.17e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 5000.0 | 9.00 | 30.00 | 14.0 | 3073.432203 | 0.014949 | 0.014949 | 2.93e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 10.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 10.757668 | 10.757668 | 1.22e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 20.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 8.518435 | 8.518435 | 1.50e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 30.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 7.070472 | 7.070472 | 1.35e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 50.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 5.241774 | 5.241774 | 1.25e-09 | 0.000 |
models.itu1623.fade_duration_number_fades | 70.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 4.123662 | 4.123662 | 3.04e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 100.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 3.073520 | 3.073520 | 2.43e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 200.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 1.534482 | 1.534482 | 4.00e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 300.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 0.944261 | 0.944261 | 8.10e-11 | 0.000 |
models.itu1623.fade_duration_number_fades | 500.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 0.469680 | 0.469680 | -2.05e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 1000.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 0.155289 | 0.155289 | 3.79e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 2000.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 0.042535 | 0.042535 | 2.64e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 3000.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 0.018245 | 0.018245 | 3.68e-11 | 0.000 |
models.itu1623.fade_duration_number_fades | 5000.0 | 12.00 | 30.00 | 14.0 | 1401.370018 | 0.005713 | 0.005713 | 2.17e-11 | 0.000 |
models.itu1623.fade_duration_number_fades | 10.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 5.528898 | 5.528898 | -1.85e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 20.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 4.346392 | 4.346392 | 1.30e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 30.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 3.581086 | 3.581086 | -4.88e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 50.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 2.625959 | 2.625959 | -1.87e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 70.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 2.048928 | 2.048928 | -3.90e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 100.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 1.512629 | 1.512629 | 4.59e-11 | 0.000 |
models.itu1623.fade_duration_number_fades | 200.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 0.739519 | 0.739519 | -2.21e-11 | -0.000 |
models.itu1623.fade_duration_number_fades | 300.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 0.448879 | 0.448879 | -1.85e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 500.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 0.219133 | 0.219133 | 2.98e-11 | 0.000 |
models.itu1623.fade_duration_number_fades | 1000.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 0.070456 | 0.070456 | -2.13e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 2000.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 0.018714 | 0.018714 | -2.19e-10 | -0.000 |
models.itu1623.fade_duration_number_fades | 3000.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 0.007874 | 0.007874 | 2.37e-10 | 0.000 |
models.itu1623.fade_duration_number_fades | 5000.0 | 15.00 | 30.00 | 14.0 | 680.678272 | 0.002403 | 0.002403 | -2.25e-10 | -0.000 |
Function fade_duration_probability¶
The table below contains the results of testing function fade_duration_probability
.
The test cases were extracted from spreadsheet ITURP1623-1_fade_duration_params.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
D = 30.0 # (s)
A = 12.51 # (dB)
el = 20.33 # (°)
f = 30.0 # (GHz)
# Make call to test-function fade_duration_probability
itur_val = itur.models.itu1623.fade_duration_probability(D=D, A=A, el=el, f=f)
# Compute error with respect to value in ITU example file
ITU_example_val = 0.183841589 #
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | D (s) | A (dB) | el (°) | f (GHz) | ITU Validation | ITU-Rpy Result | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|
models.itu1623.fade_duration_probability | 30.0 | 12.51 | 20.33 | 30.0 | 0.183842 | 0.183842 | -4.29e-10 | -0.000 |
models.itu1623.fade_duration_probability | 30.0 | 19.03 | 20.33 | 30.0 | 0.184234 | 0.184234 | -3.17e-10 | -0.000 |
models.itu1623.fade_duration_probability | 10.0 | 7.64 | 20.33 | 14.5 | 0.488779 | 0.488779 | -3.19e-11 | -0.000 |
models.itu1623.fade_duration_probability | 10.0 | 12.47 | 20.33 | 14.5 | 0.489294 | 0.489294 | -9.73e-11 | -0.000 |
models.itu1623.fade_duration_probability | 1.0 | 11.59 | 37.63 | 39.6 | 1.000000 | 1.000000 | 0.00e+00 | 0.000 |
models.itu1623.fade_duration_probability | 60.0 | 11.59 | 37.63 | 39.6 | 0.086932 | 0.086932 | 8.69e-11 | 0.000 |
models.itu1623.fade_duration_probability | 300.0 | 11.59 | 37.63 | 39.6 | 0.031858 | 0.031858 | 2.19e-10 | 0.000 |
models.itu1623.fade_duration_probability | 600.0 | 11.59 | 37.63 | 39.6 | 0.017147 | 0.017147 | -2.10e-10 | -0.000 |
models.itu1623.fade_duration_probability | 1200.0 | 11.59 | 37.63 | 39.6 | 0.007684 | 0.007684 | -3.02e-10 | -0.000 |
models.itu1623.fade_duration_probability | 1800.0 | 11.59 | 37.63 | 39.6 | 0.004392 | 0.004392 | -3.47e-10 | -0.000 |
models.itu1623.fade_duration_probability | 3600.0 | 11.59 | 37.63 | 39.6 | 0.001439 | 0.001439 | -8.83e-11 | -0.000 |
Function fade_duration_total_exceedance_time¶
The table below contains the results of testing function fade_duration_total_exceedance_time
.
The test cases were extracted from spreadsheet ITURP1623-1_fade_duration_params.csv
from the
ITU Validation examples file (rev 5.1).
In addition to the input-arguments, expected result (ITU Validation
), and
ITU-Rpy computed result (ITUR-py Result
), the absolute and relative errors
are shown. Each test case is color-coded depending on the magnitude of the
errors (green = pass, errors are negligible, red = fail, relative error is
above 0.01%).
In addition, the code snippet below shows an example of how to generate the first row of the results in the table:
import itur
# Define input attributes
D = 30.0 # (s)
A = 12.51 # (dB)
el = 20.33 # (°)
f = 30.0 # (GHz)
T_tot = 315576.0 # (s)
# Make call to test-function fade_duration_total_exceedance_time
itur_val = itur.models.itu1623.fade_duration_total_exceedance_time(D=D, A=A, el=el, f=f, T_tot=T_tot)
# Compute error with respect to value in ITU example file
ITU_example_val = 291467.215960567 # (s)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100 # (%)
ITU-Rpy Function | D (s) | A (dB) | el (°) | f (GHz) | T_tot (s) | ITU Validation (s) | ITU-Rpy Result (s) | Absolute Error | Relative Error |
---|---|---|---|---|---|---|---|---|---|
models.itu1623.fade_duration_total_exceedance_time | 30.0 | 12.51 | 20.33 | 30.0 | 315576.00 | 291467.215961 | 291467.215961 | -3.49e-10 | -0.000 |
models.itu1623.fade_duration_total_exceedance_time | 30.0 | 19.03 | 20.33 | 30.0 | 94672.80 | 86851.997600 | 86851.997600 | 3.78e-10 | 0.000 |
models.itu1623.fade_duration_total_exceedance_time | 10.0 | 7.64 | 20.33 | 14.5 | 31557.60 | 30710.632581 | 30710.632581 | -4.37e-11 | -0.000 |
models.itu1623.fade_duration_total_exceedance_time | 10.0 | 12.47 | 20.33 | 14.5 | 9467.28 | 9180.643332 | 9180.643332 | 4.17e-10 | 0.000 |
models.itu1623.fade_duration_total_exceedance_time | 1.0 | 11.59 | 37.63 | 39.6 | 157788.00 | 153240.459707 | 153240.459707 | -2.91e-10 | -0.000 |
models.itu1623.fade_duration_total_exceedance_time | 60.0 | 11.59 | 37.63 | 39.6 | 157788.00 | 134068.283701 | 134068.283701 | -2.91e-11 | -0.000 |
models.itu1623.fade_duration_total_exceedance_time | 300.0 | 11.59 | 37.63 | 39.6 | 157788.00 | 111287.301883 | 111287.301883 | 3.06e-10 | 0.000 |
models.itu1623.fade_duration_total_exceedance_time | 600.0 | 11.59 | 37.63 | 39.6 | 157788.00 | 92081.221388 | 92081.221388 | 3.93e-10 | 0.000 |
models.itu1623.fade_duration_total_exceedance_time | 1200.0 | 11.59 | 37.63 | 39.6 | 157788.00 | 67696.250744 | 67696.250744 | 2.91e-11 | 0.000 |
models.itu1623.fade_duration_total_exceedance_time | 1800.0 | 11.59 | 37.63 | 39.6 | 157788.00 | 52936.430347 | 52936.430347 | -4.44e-10 | -0.000 |
models.itu1623.fade_duration_total_exceedance_time | 3600.0 | 11.59 | 37.63 | 39.6 | 157788.00 | 30577.895884 | 30577.895884 | 5.31e-10 | 0.000 |
F.A.Q.¶
I cannot install Basemap¶
This happens most likely because you are using python version > 3.X. You can try to install from conda-forge conda install -c conda-forge cartopy
or, if you are using Windows, using the appropriate pre-compiled wheels file from this webpage. Once you download the .whl
file you can install it using pip install name_of_whl_file.whl
.
The first time I run ITU-Rpy is considerable slower¶
ITU-Rpy loads in memory several datasets upon first execution. This process might take up to 30 seconds. Once that datasets are loaded into memory ITU-Rpy uses cached versions to reduce execution time.
I cannot operate with the values returned by ITU-Rpy¶
ITU-Rpy returns Quantity objects, which consist of a value and a unit. Only quantities with compatible dimensions can be added / subtracted.
import itur
d1 = 300 * itur.u.m
d2 = 0.2 * itur.u.km
print(d1 + d2) # prints 500.0 m
p1 = 1013 * itur.u.hPa
print(d1 + p1) # Generates an error.
The user can transform between compatible units using the .to()
method.
print(d1.to(itur.u.km)) # prints 0.3 km
One can access to the values and units using the .value
and .unit
methods respectively. Some matplotlib functions accept Quantities as inputs (plt.plot
, plt.scatter
), whereas others require plain values (plt.bar).
I discovered a bug/have criticism or ideas on ITU-Rpy. Where should I report to?¶
ITU-Rpy uses the GitHub issue-tracker to take care of bugs and questions. If you experience problems with ITU-Rpy, try to provide a full error report with all the typical information (OS, version, console-output, minimum working example, …). This makes it a lot easier to reproduce the error and locate the problem.
Contributing to ITU-Rpy¶
We welcome all contributions to grow and improve ITU-Rpy. There are many ways you can contribute, be it filing bug reports, writing new documentation or submitting patches for new or fixed behavior. This guide provides everything you need to get started.
Writing code¶
The ITU-Rpy source code is managed using Git and is hosted on GitHub. The recommended way for new contributors to submit code to ` ITU-Rpy <https://github.com/inigodelportillo/ITU-Rpy/>`_ is to fork this repository and submit a pull request after committing changes to their fork. The pull request will then need to be approved by one of the core developers before it is merged into the main repository.
Coding style¶
Please follow these guidelines when writing code for ITU-Rpy:
- Follow the PEP 8 Python style guide.
- Try to use the same code style as used in the rest of the project.
- New features and recommendations should be documented. Include examples and use cases where appropriate.
- If possible, add appropriate unit tests for validation.
Bug Reports and Feature Requests¶
If you have encountered a problem with ITU-Rpy or have an idea for a new feature, please submit it to the GitHub issue-tracker.
Including or providing a link to the source files involved may help us fix the issue. If possible, try to create a minimal project that produces the error and post that instead.
Improving Documentation¶
ITU-Rpy welcomes documentation contributions. Documentation on ITU-Rpy falls into the following categories:
- API reference: The API reference docs are generated from docstrings in the ITU-Rpy source code.
- Narrative documentation: These are tutorials and other writing that’s not part of the ITU-Rpy source code. This documentation is in the ITU-Rpy/docs folder of the GitHub repository.
License¶
This program is free software: you can redistribute it and/or modify it under the terms of the MIT license (see below).
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
If you use ITU-Rpy in one of your research projects, please use the citation provided below.
MIT¶
Copyright (c) 2016 Inigo del Portillo, Massachusetts Institute of Technology
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Citation¶
If you use ITU-Rpy in one of your research projects, please cite it as:
@misc{iturpy-2017,
title={ITU-Rpy: A python implementation of the ITU-R P. Recommendations to compute
atmospheric attenuation in slant and horizontal paths.},
author={Inigo del Portillo},
year={2017},
publisher={GitHub},
howpublished={\url{https://github.com/inigodelportillo/ITU-Rpy/}}
}
Contact¶
ITU-Rpy is developed and maintained by Inigo del Portillo (inigo.del.portillo@gmail.com).
ITU-Rpy uses the GitHub issue-tracker to take care of bugs and questions. If you experience problems with ITU-Rpy, try to provide a full error report with all the typical information (OS, version, console-output, minimum working example, …). This makes it a lot easier to reproduce the error and locate the problem.
Citation¶
If you use ITU-Rpy in one of your research projects, please cite it as:
@misc{iturpy-2017,
title={ITU-Rpy: A python implementation of the ITU-R P. Recommendations to compute
atmospheric attenuation in slant and horizontal paths.},
author={Inigo del Portillo},
year={2017},
publisher={GitHub},
howpublished={\url{https://github.com/inigodelportillo/ITU-Rpy/}}
}
Indices and tables¶
Other¶
ITU-Rpy is mainly written in Python 3 and continuously tested with Python 3.5-3.9.
ITU-Rpy has the following dependencies: numpy, scipy, pyproj, and astropy. Installing cartopy and matplotlib is recommended to display results in a map.