ITU-Rpy documentation

ITU-Rpy is a python implementation of the ITU-R P. Recommendations to compute atmospheric attenuation in slant and horizontal paths.

  • A complete overview of the contents of this documentation can be found in the Table of Contents at the bottom of this page.
  • Instructions on how to install ITU-Rpy are located at the Installation page.
  • Results of running ITU-Rpy against the validation examples provided by the ITU (where available) are available at the Validation page.

Citation

If you use ITU-Rpy in one of your research projects, please cite it as:

@misc{iturpy-2017,
      title={ITU-Rpy: A python implementation of the ITU-R P. Recommendations to compute
         atmospheric attenuation in slant and horizontal paths.},
      author={Inigo del Portillo},
      year={2017},
      publisher={GitHub},
      howpublished={\url{https://github.com/inigodelportillo/ITU-Rpy/}}
}

Usage and examples

The Quick Start guide provides different examples on how to use ITUR-py.

Additional examples can be found in the examples folder, and the snippet of code below.

import itur

f = 22.5 * itur.u.GHz    # Link frequency
D = 1 * itur.u.m         # Size of the receiver antenna
el = 60                  # Elevation angle constant of 60 degrees
p = 3                    # Percentage of time that attenuation values are exceeded.

# Generate a regular grid latitude and longitude points with 1 degrees resolution
lat, lon = itur.utils.regular_lat_lon_grid()

# Comute the atmospheric attenuation
Att = itur.atmospheric_attenuation_slant_path(lat, lon, f, el, p, D)
itur.plotting.plot_in_map(Att.value, lat, lon,
                       cbar_text='Atmospheric attenuation [dB]')

which produces

attenuation to single ground station

Atmospheric attenuation worldmap @ 22.5 GHz.

Table of Contents

Installation

Installation from pypi

To install ITU-Rpy from pypi, please use the following command on the command line:

pip install itur

Manual Installation

To install the development version of ITU-Rpy, please type the following commands on the command line:

git clone https://github.com/inigodelportillo/ITU-Rpy
cd ITU-Rpy
pip install -U -r requirements.txt
python setup.py install

Installing Cartopy

Cartopy can be used to plot results in maps. Installation of Cartopy is optional, and ITU-Rpy will still work without it. However, some plotting capabilities will be deactivated. A quick overview of Cartopy if provided below:

Cartopy is a Python package designed for geospatial data processing in order to produce maps and other geospatial data analyses. Cartopy has the ability to transform points, lines, vectors, polygons and images between different projections, and it can be combined with Matplotlib to plot contours, images, vectors, lines or points in the transformed coordinates.

To install Cartopy from pypi, please use the following command on the command line:

pip install cartopy

If that does not work, you can try to download it using conda:

conda -c conda-forge install cartopy

If you are using Windows, you can also install cartopy using the appropriate pre-compiled wheels file from this webpage. After downloading the .whl file, cartopy can be installed running:

pip install name_of_whl_file.whl

Quick Start

If you have not installed ITU-Rpy yet take a look at the installation instructions and make sure that all the requirements are fulfilled. Examples to illustrate the usage of ITU-Rpy are provided in the examples-folder. In order to understand the models used, check the models section .

To get started, we will walk you through a few examples that show the most illustrative case studies for

  • First, we explain the basic usage of ITU-Rpy by computing the attenuation at a single location.
  • Second, we explain the usage of ITU-Rpy using vectorized operations.
  • Finally, we summarize other useful atmospheric functions in the library. The complete API description can be accessed through the API section .

Single location attenuation

Here we will compute the link attenuation vs. at a frequency of 22.5 GHz for a link between a satellite in GEO at the orbital slot 77 W and a ground station in Boston.

In addition, we will show how to compute other parameters of interest such as 0 degree isotherm, rainfall intensity exceeded during 0.01 % of the time, total columnar content liquid water or temperature.

First, let’s define the coordinates of our ground station and compute the elevation angle of the link

import itur
import astropy.units as u

# Ground station coordinates (Boston)
lat_GS = 42.3601
lon_GS = -71.0942

# Satellite coordinates (GEO, 77 W)
lat_sat = 0
lon_sat = -77
h_sat = 35786 * u.km

# Compute the elevation angle between satellite and ground station
el = itur.utils.elevation_angle(h_sat, lat_sat, lon_sat, lat_GS, lon_GS)

Next, we define the link parameters

f = 22.5 * u.GHz    # Link frequency
D = 1.2 * u.m       # Antenna diameters

Finally, we compute the total atmospheric attenuation as well as the different contributions for a set of unavailability values and plot the results. Note the flag return_contributions = True when calling function itur.atmospheric_attenuation_slant_path.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter

# Define unavailabilities vector
unavailabilities = np.logspace(-1.5, 1.5, 100)

# Compute the
A_g, A_c, A_r, A_s, A_t = [], [], [], [], []
for p in unavailabilities:
        a_g, a_c, a_r, a_s, a_t = itur.atmospheric_attenuation_slant_path(lat_GS, lon_GS,
                                                                          f, el, p, D,
                                                                          return_contributions=True)
        A_g.append(a_g.value)
        A_c.append(a_c.value)
        A_r.append(a_r.value)
        A_s.append(a_s.value)
        A_t.append(a_t.value)

# Plot the results
ax = plt.subplot(1,1,1)
ax.semilogx(unavailabilities, A_g, label='Gaseous attenuation')
ax.semilogx(unavailabilities, A_c, label='Cloud attenuation')
ax.semilogx(unavailabilities, A_r, label='Rain attenuation')
ax.semilogx(unavailabilities, A_s, label='Scintillation attenuation')
ax.semilogx(unavailabilities, A_t, label='Total atmospheric attenuation')

ax.xaxis.set_major_formatter(ScalarFormatter())
ax.set_xlabel('Percentage of time attenuation value is exceeded [%]')
ax.set_ylabel('Attenuation [dB]')
ax.grid(which='both', linestyle=':')
plt.legend()

which results in the following plot image:

attenuation to single ground station

Atmospheric attenuation at Boston for a link to GEO - 77 W.

Note the by default, ITU-Rpy returns Quantity type objects, which are based on astropy.units module. Quantity objects are special objects that contain a value and unit attributes. Conversion among units is possible using the .to() method.

Atmospheric parameters such as temperature, pressure, or water-vapor density can be passed to function itur.atmospheric_attenuation_slant_path manually if known, otherwise ITU-Rpy will compute them automatically using the appropriate ITU Recommendation models. Similarly, if the ground station height above mean sea level is known, it can also be introduced manually.

Vectorial operations

One of the main characteristics of ITU-Rpy is that it allows for broadcasting of operations when using vectors. This allows for several use cases.

Multiple cities

First, we might be interested in computing the atmospheric attenuation values exceeded for 0.1 % of the time for a bunch of locations. This can be done as:

import itur
cities = {'Boston': (42.36, -71.06),
          'New York': (40.71, -74.01),
          'Los Angeles': (34.05, -118.24),
          'Denver': (39.74, -104.99),
          'Las Vegas': (36.20, -115.14),
          'Seattle': (47.61, -122.33),
          'Washington DC': (38.91, -77.04)}

lat = [coords[0] for coords in cities.values()]
lon = [coords[1] for coords in cities.values()]

# Satellite coordinates (GEO, 4 E)
lat_sat = 0
lon_sat = -77
h_sat = 35786 * itur.u.km

# Compute the elevation angle between satellite and ground stations
el = itur.utils.elevation_angle(h_sat, lat_sat, lon_sat, lat, lon)

# Set the link parameters
f = 22.5 * itur.u.GHz    # Link frequency
D = 1.2 * itur.u.m       # Antenna diameters
p = 0.1                  # Unavailability (Values exceeded 0.1% of time)

# Compute the atmospheric attenuation
Ag, Ac, Ar, As, Att = itur.atmospheric_attenuation_slant_path(
        lat, lon, f, el, p, D, return_contributions=True)

and we can plot the results

# Plot the results
city_idx = np.arange(len(cities))
width = 0.15

fig, ax = plt.subplots(1, 1)
ax.bar(city_idx, Att.value, 0.6, label='Total atmospheric Attenuation')

ax.bar(city_idx - 1.5 * width, Ar.value, width, label='Rain attenuation')
ax.bar(city_idx - 0.5 * width, Ag.value, width, label='Gaseous attenuation')
ax.bar(city_idx + 0.5 * width, Ac.value, width, label='Clouds attenuation')
ax.bar(city_idx + 1.5 * width, As.value, width,
           label='Scintillation attenuation')

# Set the labels
ticks = ax.set_xticklabels([''] + list(cities.keys()))
for t in ticks:
        t.set_rotation(45)
ax.set_ylabel('Atmospheric attenuation exceeded for 0.1% [dB]')

# Format image
ax.yaxis.grid(which='both', linestyle=':')
ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.3), ncol=2)
plt.tight_layout(rect=(0, 0, 1, 0.85))
attenuation to single ground station

Atmospheric attenuation exceeded for 0.1 % of the average year in different cities of the US.

Attenuation over regions of the Earth

A second use case for vectorization is computation of the atmospheric attenuation (and other parameters) over large geographical regions. Let’s say that we want to compute the attenuation over Africa of a new Ka-band satellite located in GEO at slot 4 E.

import itur
import astropy.units as u

# Generate regular grid of latitude and longitudes with 1 degree resolution
lat, lon = itur.utils.regular_lat_lon_grid(lat_max=60,
                                           lat_min=-60,
                                           lon_max=65,
                                           lon_min=-35)

# Satellite coordinates (GEO, 4 E)
lat_sat = 0
lon_sat = 4
h_sat = 35786 * u.km

# Compute the elevation angle between satellite and ground station
el = itur.utils.elevation_angle(h_sat, lat_sat, lon_sat, lat, lon)

f = 22.5 * u.GHz    # Link frequency
D = 1.2 * u.m       # Antenna diameters
p = 1               # Unavailability (Values exceeded 1% of time)
Att = itur.atmospheric_attenuation_slant_path(lat, lon, f, el, p, D)

If you have installed Basemap (see installation instructions ), you can use function itur.plotting.plot_in_map() to display the results as an image:

# Plot the results
m = itur.plotting.plot_in_map(Att.value, lat, lon,
                           cbar_text='Atmospheric attenuation [dB]',
                           cmap='magma')

# Plot the satellite location
m.scatter(lon_sat, lat_sat, c='white', s=20)
attenuation to single ground station

Atmospheric attenuation over Africa @ 22.5 GHz.

Other atmospheric functions

We conclude the quickstart with a summary of other functions included in ITU-Rpy that might be useful to compute atmospheric attenuation related parameters. The complete API description can be accessed through the API section .

import itur

# Location of the receiver ground stations
lat = 41.39
lon = -71.05

# Link parameters
el = 60                # Elevation angle equal to 60 degrees
f = 22.5 * itur.u.GHz  # Frequency equal to 22.5 GHz
D = 1 * itur.u.m       # Receiver antenna diameter of 1 m
p = 0.1                # We compute values exceeded during 0.1 % of the average
                                           # year

# Compute atmospheric parameters
hs = itur.topographic_altitude(lat, lon)
T = itur.surface_mean_temperature(lat, lon)
P = itur.standard_pressure(lat, hs)
rho_p = itur.surface_water_vapour_density(lat, lon, p, hs)
rho_sa = itur.models.itu835.water_vapour_density(lat, hs)
T_sa = itur.models.itu835.temperature(lat, hs)
V = itur.models.itu836.total_water_vapour_content(lat, lon, p, hs)

# Compute rain and cloud-related parameters
R_prob = itur.models.itu618.rain_attenuation_probability(lat, lon, el, hs)
R_pct_prob = itur.models.itu837.rain_percentage_probability(lat, lon)
R001 = itur.models.itu837.rainfall_rate(lat, lon, p)
h_0 = itur.models.itu839.isoterm_0(lat, lon)
h_rain = itur.models.itu839.rain_height(lat, lon)
L_red = itur.models.itu840.columnar_content_reduced_liquid(lat, lon, p)
A_w = itur.models.itu676.zenit_water_vapour_attenuation(lat, lon, p, f, alt=hs)

# Compute attenuation values
A_g = itur.gaseous_attenuation_slant_path(f, el, rho_p, P, T)
A_r = itur.rain_attenuation(lat, lon, f, el, hs=hs, p=p)
A_c = itur.cloud_attenuation(lat, lon, el, f, p)
A_s = itur.scintillation_attenuation(lat, lon, f, el, p, D)
A_t = itur.atmospheric_attenuation_slant_path(lat, lon, f, el, p, D)

Running the code above produces the following results. The ITU Recommendation where the variable or the procedure to compute it is referred appears in square brackets.

The ITU recommendations predict the following values for the point located
at coordinates (41.39, -71.05)
  - Height above the sea level                  [ITU-R P.1511]      22.9 m
  - Surface mean temperature                    [ITU-R P.1510]      9.4 deg_C
  - Surface pressure                            [ITU-R P.835]       1005.4 hPa
  - Standard surface temperature                [ITU-R P.835]       13.6 deg_C
  - Standard water vapour density               [ITU-R P.835]       8.9 g / m3
  - Water vapor density (p=0.1%)                [ITU-R P.836]       20.3 g / m3
  - Total water vapour content (p=0.1%)         [ITU-R P.836]       54.6 kg / m2
  - Rain attenuation probability                [ITU-R P.618]       9.6 %
  - Rain percentage probability                 [ITU-R P.837]       7.8 %
  - Rainfall rate exceeded for p=0.1%           [ITU-R P.837]       12.9 mm / h
  - 0 degree C isotherm height                  [ITU-R P.839]       3.2 km
  - Rain height                                 [ITU-R P.839]       3.5 km
  - Columnar content of reduced liquid (p=0.1%) [ITU-R P.840]       3.0 kg / m2
  - Zenit water vapour attenuation (p=0.1%)     [ITU-R P.676]       1.5 dB


Attenuation values exceeded for p=0.1% of the average year for a link with el=60 deg, f=22.5 GHz,
D=1.0 m and receiver ground station located at coordinates (41.39, -71.05)
  - Rain attenuation                            [ITU-R P.618]       8.2 dB
  - Gaseous attenuation                         [ITU-R P.676]       1.5 dB
  - Clouds attenuation                          [ITU-R P.840]       1.6 dB
  - Scintillation attenuation                   [ITU-R P.618]       0.3 dB
  - Total atmospheric attenuation               [ITU-R P.618]       10.8 dB

API Documentation

ITU-Rpy

Contents

itur package
Package contents

ITU-RPy is a python implementation of the ITU-P R Recommendations.

ITU-Rpy can be used to compute atmospheric attenuation for Earth-to-space and horizontal paths, for frequencies in the GHz range.

The propagation loss on an Earth-space path and a horizontal-path, relative to the free-space loss, is the sum of different contributions, namely:

  • attenuation by atmospheric gases;
  • attenuation by rain, other precipitation and clouds;
  • scintillation and multipath effects;
  • attenuation by sand and dust storms.

Each of these contributions has its own characteristics as a function of frequency, geographic location and elevation angle. ITU-Rpy allows for fast, vectorial computation of the different contributions to the atmospheric attenuation.

itur.utils package

itur.utils is a utilities library for ITU-Rpy.

This utility library for ITU-Rpy contains methods to: * Load data and build an interpolator object. * Prepare the input and output arrays, and handle unit transformations. * Compute distances and elevation angles between two points on Earth and

or space.
itur.utils.load_data_interpolator(path_lat, path_lon, path_data, interp_fcn, flip_ud=True)[source]

Load a lat-lon tabulated dataset and build an interpolator.

Parameters:
  • path_lat (string) – Path for the file containing the latitude values
  • path_lon (string) – Path for the file containing the longitude values
  • path_data (string) – Path for the file containing the data values
  • interp_fcn (string) – The interpolation function to be used
  • flip_ud (boolean) – Whether to flip the latitude and data arrays along the first axis. This is an artifact of the format that the ITU uses to encode its data, which is inconsistent across recommendations (in some recommendations, latitude are sorted in ascending order, in others they are sorted in descending order).
Returns:

interp – An interpolator that given a latitude-longitude pair, returns the data value

Return type:

interp_fcn

itur.utils.load_data(path, is_text=False, **kwargs)[source]

Load data files from ./itur/data/.

Loads data from a comma-separated values file. The contents of the file can be numeric or text-based.

Parameters:
  • path (string) – Path of the data to load
  • is_text (bool) – Indicates whether the data is text (True) or numerical (False). Default value is False.
Returns:

data – Numpy-array with the data. Numerical data is returned as a float

Return type:

numpy.ndarray

itur.utils.get_input_type(inpt)[source]

Return the type of the input.

If the input is an object of type Quantity, it returns the type of the associated value

Parameters:inpt (object) – The input object.
Returns:type – The type of the input.
Return type:type
itur.utils.prepare_input_array(input_array)[source]

Format an array to be a 2-D numpy-array.

If the contents of input_array are 0-D or 1-D, it converts is to an array with at least two dimensions.

Parameters:input_array (numpy.ndarray, sequence, or number) – The input value. It can be a scalar, 1-D array, or 2-D array.
Returns:output_array – An 2-D numpy array with the input values
Return type:numpy.ndarray
itur.utils.prepare_output_array(output_array, type_input=None)[source]

Format the output to have the same shape and type as the input.

This function is a generic wrapper to format the output of a function to have the same type as the input. ITU-Rpy makes extensive use of numpy arrays, but uses this function to return outputs having the same type that was provided in the input of the function.

itur.utils.prepare_quantity(value, units=None, name_val=None)[source]

Convert the input to the required units.

The function verifies that the input has the right units and converts it to the desired units. For example, if a value is introduced in km but posterior frequencies require this value to be in meters, this function would be called with units=u.m

Parameters:
  • value (astropy.units.Quantity, number, sequence, or np.ndarry) – The input value
  • units (astropy.units) – Desired units of the output
  • name_val (string) – Name of the variable (for debugging purposes)
Returns:

q – An numpy array with the values converted to the desired units.

Return type:

numpy.ndarray

itur.utils.compute_distance_earth_to_earth(lat_p, lon_p, lat_grid, lon_grid, method=None)[source]

Compute the distance between a point and a matrix of (lat, lons).

If the number of elements in lat_grid is smaller than 100,000, uses the WGS84 method, otherwise, uses the Haversine formula.

Parameters:
  • lat_p (number) – Latitude projection of the point P (degrees)
  • lon_p (number) – Longitude projection of the point P (degrees)
  • lat_grid (number, sequence of np.ndarray) – Grid of latitude points to which compute the distance (degrees)
  • lon_grid (number, sequence of np.ndarray) – Grid of longitude points to which compute the distance (degrees)
Returns:

d – Distance between the point P and each point in (lat_grid, lon_grid) (km)

Return type:

numpy.ndarray

itur.utils.compute_distance_earth_to_earth_wgs84(lat_p, lon_p, lat_grid, lon_grid)[source]

Compute the distance between points using the WGS84 inverse method.

Compute the distance between a point (P) in (lat_p, lon_p) and a matrix of latitude and longitudes (lat_grid, lon_grid) using the WGS84 inverse method.

Parameters:
  • lat_p (number) – Latitude projection of the point P (degrees)
  • lon_p (number) – Longitude projection of the point P (degrees)
  • lat_grid (number, sequence of np.ndarray) – Grid of latitude points to which compute the distance (degrees)
  • lon_grid (number, sequence of np.ndarray) – Grid of longitude points to which compute the distance (degrees)
Returns:

d – Distance between the point P and each point in (lat_grid, lon_grid) (km)

Return type:

numpy.ndarray

itur.utils.compute_distance_earth_to_earth_haversine(lat_p, lon_p, lat_grid, lon_grid)[source]

Compute the distance between points using the Haversine formula.

Compute the distance between a point (P) in (lat_s, lon_s) and a matrix of latitude and longitudes (lat_grid, lon_grid) using the Haversine formula.

Parameters:
  • lat_p (number) – Latitude projection of the point P (degrees)
  • lon_p (number) – Longitude projection of the point P (degrees)
  • lat_grid (number, sequence of np.ndarray) – Grid of latitude points to which compute the distance (degrees)
  • lon_grid (number, sequence of np.ndarray) – Grid of longitude points to which compute the distance (degrees)
Returns:

d – Distance between the point P and each point in (lat_grid, lon_grid) (km)

Return type:

numpy.ndarray

References

This is based on the Haversine formula

itur.utils.regular_lat_lon_grid(resolution_lat=1, resolution_lon=1, lon_start_0=False, lat_min=-90, lat_max=90, lon_min=-180, lon_max=180)[source]

Build regular latitude and longitude matrices.

Builds a latitude and longitude coordinate matrix with resolution resolution_lat, resolution_lon.

Parameters:
  • resolution_lat (number) – Resolution for the latitude axis (deg)
  • resolution_lon (number) – Resolution for the longitude axis (deg)
  • lon_start_0 (boolean) – Indicates whether the longitude is indexed using a 0 - 360 scale (True) or using -180 - 180 scale (False). Default value is False
Returns:

  • lat (numpy.ndarray) – Grid of coordinates of the latitude point
  • lon (numpy.ndarray) – Grid of coordinates of the longitude point

itur.utils.elevation_angle(h, lat_s, lon_s, lat_grid, lon_grid)[source]

Compute the elevation angle between a satellite and a point on Earth.

Compute the elevation angle between a satellite located in an orbit at height h and located above coordinates (lat_s, lon_s) and a matrix of latitude and longitudes (lat_grid, lon_grid).

Parameters:
  • h (float) – Orbital altitude of the satellite (km)
  • lat_s (float) – Latitude of the projection of the satellite (degrees)
  • lon_s (float) – Longitude of the projection of the satellite (degrees)
  • lat_grid (number, sequence of np.ndarray) – Grid of latitude points to which compute the elevation angle (degrees)
  • lon_grid (number, sequence of np.ndarray) – Grid of longitude points to which compute the elevation angle (degrees)
Returns:

elevation – Elevation angle between the satellite and each point in (lat_grid, lon_grid) (degrees)

Return type:

numpy.ndarray

References

[1] http://www.propagation.gatech.edu/ECE6390/notes/ASD5.pdf - Slides 3, 4

itur.plotting package

itur.plotting provides convenient function to plot maps in ITU-Rpy.

This submodule uses matplotlib and cartopy as the default library to plot maps. Alternatively, the user can use basemap (if installed).

The example below shows the use of plot_in_map to display the mean surface temperature on the Earth.

import itur

# Generate a regular grid of latitude and longitudes with 0.1 degree
#  resolution.
lat, lon = itur.utils.regular_lat_lon_grid(resolution_lat=0.1,
                                           resolution_lon=0.1)

# Compute the surface mean temperature
T = itur.models.itu1510.surface_mean_temperature(lat, lon)

# Display the results in a map (using cartopy)
ax = itur.plotting.plot_in_map(
        T, lat, lon, cmap='jet', vmin=230, vmax=310,
        cbar_text='Annual mean surface temperature [K]')

# Display the results in a map (using basemap)
ax = itur.plotting.plot_in_map_basemap(
        T, lat, lon, cmap='jet', vmin=230, vmax=310,
        cbar_text='Annual mean surface temperature [K]')
itur.plotting.plot_in_map(data, lat=None, lon=None, lat_min=None, lat_max=None, lon_min=None, lon_max=None, cbar_text='', ax=None, figsize=(6, 4), **kwargs)[source]

Plot the values in data in a map using cartopy.

The map uses an PlateCarree projection. Either {lat, lon} or {lat_min, lat_max, lon_min, lon_max} need to be provided as inputs. This function requires that cartopy and matplotlib are installed.

Parameters:
  • data (np.ndarray) – Data values to be plotted.
  • lat (np.ndarray) – Matrix with the latitudes for each point in data (deg N)
  • lon (np.ndarray) – Matrix with the longitudes for each point in data (deg E)
  • lat_min (float) – Minimum latitude of the data (deg N)
  • lat_max (float) – Maximum latitude of the data (deg N)
  • lon_min (float) – Minimum longitude of the data (deg E)
  • lat_max – Maximum longitude of the data (deg E)
  • cbar_text (string) – Colorbar text caption.
  • ax (Axes) – matplotlib axes where the data will be plotted.
  • figsize (tuple) – Dimensions of the Figure
  • **kwargs (dict) – Key-value arguments that will be passed to the contourf function.
Returns:

ax – The matploltib axes object

Return type:

Axes

itur.plotting.plot_in_map_basemap(data, lat=None, lon=None, lat_min=None, lat_max=None, lon_min=None, lon_max=None, cbar_text='', ax=None, figsize=(6, 4), **kwargs)[source]

Plot the values in data in a map using basemap.

The map uses an equidistant cylindrical projection. Either {lat, lon} or {lat_min, lat_max, lon_min, lon_max} to be provided as inputs. This function requires that basemap and matplotlib are installed.

Parameters:
  • data (np.ndarray) – Data values to be plotted.
  • lat (np.ndarray) – Matrix with the latitudes for each point in data (deg N)
  • lon (np.ndarray) – Matrix with the longitudes for each point in data (deg E)
  • lat_min (float) – Minimum latitude of the data (deg N)
  • lat_max (float) – Maximum latitude of the data (deg N)
  • lon_min (float) – Minimum longitude of the data (deg E)
  • lat_max – Maximum longitude of the data (deg E)
  • cbar_text (string) – Colorbar text caption.
  • ax (Axes) – matplotlib axes where the data will be plotted.
  • figsize (tuple) – Dimensions of the Figure
  • **kwargs (dict) – Key-value arguments that will be passed to the imshow function.
Returns:

m – The map object generated by Basemap

Return type:

Basemap

itur.models package

The itur.models package contains the implementation of the models described in the different ITU-R P. recommendations.

Individual modules can be imported from itur.models using itu<recomendation_number>, as shown below:

import itur.models.itu618

Each module contains two functions, get_version() and change_version(), that allow to obtain or change the version currently being used. The script below provides an example for the module that implements Recommendation ITU-R P.618.

import itur.models.itu618 as itu618

print('Current version of ITU-R P.618: ', itu618.get_version())
itu618.change_version(12)  # Change to version ITU-R P.618-12

By default, each module contains a __model object that acts as a singleton instance for the recommendation model. For most use cases, it is recommended that the developers interact with the model using the publicly documented functions. This way, it is ensured that all functions called belong to the same recommendation version, and that the parameters passed to the functions have the right units and format.

However, if a developer wants to instantiate a new model object (i.e., to compare results from different version, for development purposes), a new object can be instantiated as shown in the example below:

import itur.models.itu618 as itu618

model_618_12 = itu618._ITU618(12)
model_618_13 = itu618._ITU618(13)
Package contents
Recommendation ITU-R P.453

This Recommendation provides a method to estimate the radio refractive index and its behaviour for locations worldwide; describes both surface and vertical profile characteristics; and provides global maps for the distribution of refractivity parameters and their statistical variation.

Title PDF Latest approved in
Recommendation ITU-R P.453 [PDF] 2019-08
its formula and refractivity data
Current recommendation version (In force)   Date
Recommendation ITU-R P.453-14 [PDF] 08/2019
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.453-13 [PDF] 12/2017
Recommendation ITU-R P.453-12 [PDF] 09/2016
Recommendations not implemented in ITU-Rpy   Date
Recommendation ITU-R P.453-14 [PDF] 08/2019
Recommendation ITU-R P.453-11 [PDF] 07/2015
Recommendation ITU-R P.453-10 [PDF] 02/2012
Recommendation ITU-R P.453-9 [PDF] 04/2003
Recommendation ITU-R P.453-8 [PDF] 02/2001
Recommendation ITU-R P.453-7 [PDF] 10/1999
Recommendation ITU-R P.453-6 [PDF] 05/1997
Recommendation ITU-R P.453-5 [PDF] 10/1995
Recommendation ITU-R P.453-4 [PDF] 08/1994
Introduction

The atmospheric radio refractive index, n, can be computed by the following formula:

\[ \begin{align}\begin{aligned}n &= 1 + N\cdot 10^{-6}\\N &= 77.6 \frac{P_d}{T} + 72\frac{e}{T} +3.75\cdot10^{5}\frac{e}{T^2}\end{aligned}\end{align} \]
where
  • \(P_d\) : dry atmospheric pressure (hPa)
  • \(P\) : total atmospheric pressure (hPa)
  • \(e\) : water vapour pressure (hPa)
  • \(T\) : absolute temperature (K)

Furthermore, in the absence of reliable local data, data on refractivity and refractivity gradients all over the world can be computed using global numerical maps provided in this recommendation.

Module description
itur.models.itu453.change_version(new_version)[source]

Change the version of the ITU-R P.453 recommendation currently being used.

This function changes the model used for the ITU-R P.453 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 13: Activates recommendation ITU-R P.453-13 (12/17)
  • 12: Activates recommendation ITU-R P.453-12 (07/15)
itur.models.itu453.get_version()[source]

Obtain the version of the ITU-R P.453 recommendation currently being used.

Returns:version – The version of the ITU-R P.453 recommendation being used.
Return type:int
itur.models.itu453.wet_term_radio_refractivity(e, T)[source]

Determine the wet term of the radio refractivity.

Parameters:
  • e (number or Quantity) – Water vapour pressure (hPa)
  • T (number or Quantity) – Absolute temperature (K)
Returns:

N_wet – Wet term of the radio refractivity (-)

Return type:

Quantity

References

[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en

itur.models.itu453.dry_term_radio_refractivity(Pd, T)[source]

Determine the dry term of the radio refractivity.

Parameters:
  • Pd (number or Quantity) – Dry atmospheric pressure (hPa)
  • T (number or Quantity) – Absolute temperature (K)
Returns:

N_dry – Dry term of the radio refractivity (-)

Return type:

Quantity

References

[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en

itur.models.itu453.radio_refractive_index(P, e, T)[source]

Compute the radio refractive index.

Parameters:
  • P (number or Quantity) – Total atmospheric pressure (hPa)
  • e (number or Quantity) – Water vapour pressure (hPa)
  • T (number or Quantity) – Absolute temperature (K)
Returns:

n – Radio refractive index (-)

Return type:

Quantity

References

[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en

itur.models.itu453.water_vapour_pressure(T, P, H, type_hydrometeor='water')[source]

Determine the water vapour pressure.

Parameters:
  • T (number or Quantity) – Absolute temperature (C)
  • P (number or Quantity) – Total atmospheric pressure (hPa)
  • H (number or Quantity) – Relative humidity (%)
  • type_hydrometeor (string) – Type of hydrometeor. Valid strings are ‘water’ and ‘ice’
Returns:

e – Water vapour pressure (hPa)

Return type:

Quantity

References

[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en

itur.models.itu453.saturation_vapour_pressure(T, P, type_hydrometeor='water')[source]

Determine the saturation water vapour pressure.

Parameters:
  • T (number or Quantity) – Absolute temperature (C)
  • P (number or Quantity) – Total atmospheric pressure (hPa)
  • type_hydrometeor (string) – Type of hydrometeor. Valid strings are ‘water’ and ‘ice’
Returns:

e_s – Saturation water vapour pressure (hPa)

Return type:

Quantity

References

[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en

itur.models.itu453.map_wet_term_radio_refractivity(lat, lon, p=50)[source]

Determine the wet term of the radio refractivity.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns:

N_wet – Wet term of the radio refractivity (-)

Return type:

Quantity

References

[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en

itur.models.itu453.DN65(lat, lon, p)[source]
Determine the statistics of the vertical gradient of radio
refractivity in the lower 65 m from the surface of the Earth.
Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • p (number) – Percentage of time exceeded for p% of the average year
Returns:

DN65_p – Vertical gradient of radio refractivity in the lowest 65 m from the surface of the Earth exceeded for p% of the average year

Return type:

Quantity

References

[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en

itur.models.itu453.DN1(lat, lon, p)[source]
Determine the statistics of the vertical gradient of radio
refractivity over 1 km layer from the surface.
Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • p (number) – Percentage of time exceeded for p% of the average year
Returns:

DN1_p – Vertical gradient of radio refractivity over a 1 km layer from the surface exceeded for p% of the average year

Return type:

Quantity

References

[1] The radio refractive index: its formula and refractivity data https://www.itu.int/rec/R-REC-P.453/en

Recommendation ITU-R P.530

This Recommendation provides prediction methods for the propagation effects that should be taken into account in the design of digital fixed line-of-sight links, both in clear-air and rainfall conditions. It also provides link design guidance in clear step-by-step procedures including the use of mitigation techniques to minimize propagation impairments. The final outage predicted is the base for other Recommendations addressing error performance and availability.

Title PDF Latest approved in
Recommendation ITU-R P.530 [PDF] 2017-12
Propagation data and prediction methods required for the design of terrestrial line-of-sight systems
Current recommendation version (In force)   Date
Recommendation ITU-R P.530-17 [PDF] 12/2017
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.530-17 [PDF] 12/2017
Recommendation ITU-R P.530-16 [PDF] 07/2015
Recommendations not implemented in ITU-Rpy   Date
Recommendation ITU-R P.530-15 [PDF] 09/2013
Recommendation ITU-R P.530-14 [PDF] 02/2012
Recommendation ITU-R P.530-13 [PDF] 10/2009
Recommendation ITU-R P.530-12 [PDF] 02/2007
Recommendation ITU-R P.530-11 [PDF] 03/2005
Recommendation ITU-R P.530-10 [PDF] 11/2001
Recommendation ITU-R P.530-9 [PDF] 02/2001
Recommendation ITU-R P.530-8 [PDF] 10/1999
Recommendation ITU-R P.530-7 [PDF] 08/1997
Recommendation ITU-R P.530-6 [PDF] 10/1995
Recommendation ITU-R P.530-5 [PDF] 08/1994
Introduction

The propagation loss on a terrestrial line-of-sight path relative to the free-space loss (see Recommendation ITU-R P.525) is the sum of different contributions as follows:

  • attenuation due to atmospheric gases;
  • diffraction fading due to obstruction or partial obstruction of the path;
  • fading due to multipath, beam spreading and scintillation;
  • attenuation due to variation of the angle-of-arrival/launch;
  • attenuation due to precipitation;
  • attenuation due to sand and dust storms.

Each of these contributions has its own characteristics as a function of frequency, path length and geographic location. These are described in the paragraphs that follow.

Module description
itur.models.itu530.change_version(new_version)[source]

Change the version of the ITU-R P.530 recommendation currently being used.

This function changes the model used for the ITU-R P.530 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 16: Activates recommendation ITU-R P.530-16 (07/15) (Current version)
itur.models.itu530.get_version()[source]

Obtain the version of the ITU-R P.530 recommendation currently being used.

Returns:version – The version of the ITU-R P.530 recommendation being used.
Return type:int
itur.models.itu530.fresnel_ellipse_radius(d1, d2, f)[source]

Compute the radius of the first Fresnel ellipsoid.

Parameters:
  • d1 (number, sequence, or numpy.ndarray) – Distances from the first terminal to the path obstruction. [km]
  • d2 (number, sequence, or numpy.ndarray) – Distances from the second terminal to the path obstruction. [km]
  • f (number) – Frequency of the link [GHz]
Returns:

F1 – Radius of the first Fresnel ellipsoid [m]

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en

itur.models.itu530.diffraction_loss(d1, d2, h, f)[source]

Estimate the diffraction loss over average terrain.

Diffraction loss over average terrain. This value is valid for losses greater than 15 dB.

Parameters:
  • d1 (number, sequence, or numpy.ndarray) – Distances from the first terminal to the path obstruction. [km]
  • d2 (number, sequence, or numpy.ndarray) – Distances from the second terminal to the path obstruction. [km]
  • h (number, sequence, or numpy.ndarray) – Height difference between most significant path blockage and the path trajectory. h is negative if the top of the obstruction of interest is above the virtual line-of-sight. [m]
  • f (number) – Frequency of the link [GHz]
Returns:

A_d – Diffraction loss over average terrain [dB]

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en

itur.models.itu530.multipath_loss_for_A(lat, lon, h_e, h_r, d, f, A)[source]

Estimate the single-frequency (or narrow-band) fading distribution.

Method for predicting the single-frequency (or narrow-band) fading distribution at large fade depths in the average worst month in any part of the world. Given a fade depth value ‘A’, determines the amount of time it will be exceeded during a year

This method does not make use of the path profile and can be used for initial planning, licensing, or design purposes.

This method is only valid for small percentages of time.

Multi-path fading and enhancement only need to be calculated for path lengths longer than 5 km, and can be set to zero for shorter paths.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • h_e (number) – Emitter antenna height (above the sea level) [m]
  • h_r (number) – Receiver antenna height (above the sea level) [m]
  • d (number, sequence, or numpy.ndarray) – Distances between antennas [km]
  • f (number) – Frequency of the link [GHz]
  • A (number) – Fade depth [dB]
Returns:

p_w – percentage of time that fade depth A is exceeded in the average worst month [%]

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en

itur.models.itu530.multipath_loss(lat, lon, h_e, h_r, d, f, A)[source]

Estimate the percentage of time that any fade depth is exceeded.

Method for predicting the percentage of time that any fade depth is exceeded. This method combines the deep fading distribution given in the multipath_loss_for_A’ and an empirical interpolation procedure for shallow fading down to 0 dB.

This method does not make use of the path profile and can be used for initial planning, licensing, or design purposes.

Multi-path fading and enhancement only need to be calculated for path lengths longer than 5 km, and can be set to zero for shorter paths.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • h_e (number) – Emitter antenna height (above the sea level) [m]
  • h_r (number) – Receiver antenna height (above the sea level) [m]
  • d (number, sequence, or numpy.ndarray) – Distances between antennas [km]
  • f (number) – Frequency of the link [GHz]
  • A (number) – Fade depth [dB]
Returns:

p_w – percentage of time that fade depth A is exceeded in the average worst month [%]

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en

itur.models.itu530.rain_attenuation(lat, lon, d, f, el, p, tau=45, R001=None)[source]

Estimate long-term statistics of rain attenuation.

Attenuation can also occur as a result of absorption and scattering by such hydro-meteors as rain, snow, hail and fog. Although rain attenuation can be ignored at frequencies below about 5 GHz, it must be included in design calculations at higher frequencies, where its importance increases rapidly.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • d (number, sequence, or numpy.ndarray) – Path length [km]
  • f (number) – Frequency of the link [GHz]
  • el (sequence, or number) – Elevation angle (degrees)
  • p (number) – Percentage of the time the rain attenuation value is exceeded.
  • R001 (number, optional) –

    Point rainfall rate for the location for 0.01% of an average year (mm/h). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.837. Some useful values:

    • 0.25 mm/h : Drizzle
    • 2.5 mm/h : Light rain
    • 12.5 mm/h : Medium rain
    • 25.0 mm/h : Heavy rain
    • 50.0 mm/h : Downpour
    • 100 mm/h : Tropical
    • 150 mm/h : Monsoon
  • tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
Returns:

A_r – Attenuation exceeded during p percent of the time [dB]

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en

itur.models.itu530.inverse_rain_attenuation(lat, lon, d, f, el, Ap, tau=45, R001=None)[source]

Estimate the percentage of time a given attenuation is exceeded.

Estimate the percentage of time a given attenuation is exceeded due to rain events.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • d (number, sequence, or numpy.ndarray) – Path length [km]
  • f (number) – Frequency of the link [GHz]
  • el (sequence, or number) – Elevation angle (degrees)
  • Ap (number) – Fade depth
  • R001 (number, optional) –

    Point rainfall rate for the location for 0.01% of an average year (mm/h). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.837. Some useful values:

    • 0.25 mm/h : Drizzle
    • 2.5 mm/h : Light rain
    • 12.5 mm/h : Medium rain
    • 25.0 mm/h : Heavy rain
    • 50.0 mm/h : Downpour
    • 100 mm/h : Tropical
    • 150 mm/h : Monsoon
  • tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
Returns:

p – Percentage of time that the attenuation A is exceeded.

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en

itur.models.itu530.rain_event_count(lat, lon, d, f, el, A, tau=45, R001=None)[source]

Estimate the number of fade events exceeding attenuation ‘A’.

Estimate the number of fade events exceeding attenuation ‘A’ for 10 seconds or longer.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • d (number, sequence, or numpy.ndarray) – Path length [km]
  • f (number) – Frequency of the link [GHz]
  • el (sequence, or number) – Elevation angle (degrees)
  • A (number) – Fade depth
  • R001 (number, optional) –

    Point rainfall rate for the location for 0.01% of an average year (mm/h). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.837. Some useful values:

    • 0.25 mm/h : Drizzle
    • 2.5 mm/h : Light rain
    • 12.5 mm/h : Medium rain
    • 25.0 mm/h : Heavy rain
    • 50.0 mm/h : Downpour
    • 100 mm/h : Tropical
    • 150 mm/h : Monsoon
  • tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
Returns:

p – Percentage of time that the attenuation A is exceeded.

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en

itur.models.itu530.XPD_outage_clear_air(lat, lon, h_e, h_r, d, f, XPD_g, C0_I, XPIF=0)[source]

Estimate the probability of outage due to cross-polar discrimination.

Estimate the probability of outage due to cross-polar discrimination reduction due to clear-air effects, assuming that a target C0_I is required.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • h_e (number) – Emitter antenna height (above the sea level) [m]
  • h_r (number) – Receiver antenna height (above the sea level) [m]
  • d (number, sequence, or numpy.ndarray) – Distances between antennas [km]
  • f (number) – Frequency of the link [GHz]
  • XPD_g (number) – Manufacturer’s guaranteed minimum XPD at boresight for both the transmitting and receiving antennas [dB]
  • C0_I (number) – Carrier-to-interference ratio for a reference BER [dB]
  • XPIF (number, optional) – Laboratory-measured cross-polarization improvement factor that gives the difference in cross-polar isolation (XPI) at sufficiently large carrier-to-noise ratio (typically 35 dB) and at a specific BER for systems with and without cross polar interference canceler (XPIC). A typical value of XPIF is about 20 dB. Default value 0 dB (no XPIC) [dB]
Returns:

p_XP – Probability of outage due to clear-air cross-polarization

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en

itur.models.itu530.XPD_outage_precipitation(lat, lon, d, f, el, C0_I, tau=45, U0=15, XPIF=0)[source]

Estimate the probability of outage due to cross-polar discrimination.

Estimate the probability of outage due to cross-polar discrimination reduction due to clear-air effects, assuming that a target C0_I is required.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • d (number, sequence, or numpy.ndarray) – Distances between antennas [km]
  • f (number) – Frequency of the link [GHz]
  • el (sequence, or number) – Elevation angle (degrees)
  • C0_I (number) – Carrier-to-interference ratio for a reference BER [dB]
  • tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
  • U0 (number, optional) – Coefficient for the cumulative distribution of the co-polar attenuation (CPA) for rain. Default 15 dB.
  • XPIF (number, optional) – Laboratory-measured cross-polarization improvement factor that gives the difference in cross-polar isolation (XPI) at sufficiently large carrier-to-noise ratio (typically 35 dB) and at a specific BER for systems with and without cross polar interference canceler (XPIC). A typical value of XPIF is about 20 dB. Default value 0 dB (no XPIC) [dB]
Returns:

p_XP – Probability of outage due to clear-air cross-polarization

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of terrestrial line-of-sight systems: https://www.itu.int/rec/R-REC-P.530/en

Recommendation ITU-R P.618

This Recommendation provides methods to predict the various propagation parameters needed in planning Earth-space systems operating in either the Earth-to-space or space-to-Earth direction.

Title PDF Latest approved in
Recommendation ITU-R P.618 [PDF] 2017-12
Propagation data and prediction methods required for the design of Earth-space telecommunication systems
Current recommendation version (In force)   Date
Recommendation ITU-R P.618-13 [PDF] 12/2017
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.618-13 [PDF] 12/2017
Recommendation ITU-R P.618-12 [PDF] 07/2015
Recommendations not implemented in ITU-Rpy   Date
Recommendation ITU-R P.618-11 [PDF] 09/2013
Recommendation ITU-R P.618-10 [PDF] 10/2009
Recommendation ITU-R P.618-9 [PDF] 08/2007
Recommendation ITU-R P.618-8 [PDF] 04/2003
Recommendation ITU-R P.618-7 [PDF] 02/2001
Recommendation ITU-R P.618-6 [PDF] 10/1999
Recommendation ITU-R P.618-5 [PDF] 05/1997
Recommendation ITU-R P.618-4 [PDF] 10/1995
Recommendation ITU-R P.618-3 [PDF] 08/1994
Introduction

The propagation loss on an Earth-space path, relative to the free-space loss, is the sum of different contributions as follows:

  • attenuation by atmospheric gases;
  • attenuation by rain, other precipitation and clouds;
  • focusing and defocusing;
  • decrease in antenna gain due to wave-front incoherence;
  • scintillation and multipath effects;
  • attenuation by sand and dust storms.

Each of these contributions has its own characteristics as a function of frequency, geographic location and elevation angle. As a rule, at elevation angles above 10 degrees, only gaseous attenuation, rain and cloud attenuation and possibly scintillation will be significant, depending on propagation conditions.

Module description
itur.models.itu618.change_version(new_version)[source]

Change the version of the ITU-R P.618 recommendation currently being used.

This function changes the model used for the ITU-R P.618 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 13: Activates recommendation ITU-R P.618-13 (12/17) (Current version)
  • 12: Activates recommendation ITU-R P.618-12 (07/15) (Superseded)
itur.models.itu618.get_version()[source]

The version of the current model for the ITU-R P.618 recommendation.

Obtain the version of the ITU-R P.618 recommendation currently being used.

Returns:version – The version of the ITU-R P.618 recommendation being used.
Return type:int
itur.models.itu618.rain_attenuation(lat, lon, f, el, hs=None, p=0.01, R001=None, tau=45, Ls=None)[source]

Calculation of long-term rain attenuation statistics from point rainfall rate. The following procedure provides estimates of the long-term statistics of the slant-path rain attenuation at a given location for frequencies up to 55 GHz.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • f (number) – Frequency (GHz)
  • el (sequence, or number) – Elevation angle (degrees)
  • hs (number, sequence, or numpy.ndarray, optional) – Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
  • p (number, optional) – Percentage of the time the rain attenuation value is exceeded.
  • R001 (number, optional) –

    Point rainfall rate for the location for 0.01% of an average year (mm/h). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.837. Some useful values:

    • 0.25 mm/h : Drizzle
    • 2.5 mm/h : Light rain
    • 12.5 mm/h : Medium rain
    • 25.0 mm/h : Heavy rain
    • 50.0 mm/h : Downpour
    • 100 mm/h : Tropical
    • 150 mm/h : Monsoon
  • tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
  • Ls (number, optional) – Slant path length (km). If not provided, it will be computed using the rain height and the elevation angle. The ITU model does not require this parameter as an input.
Returns:

attenuation – Attenuation due to rain (dB)

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf

itur.models.itu618.rain_attenuation_probability(lat, lon, el, hs=None, Ls=None, P0=None)[source]

The following procedure computes the probability of non-zero rain attenuation on a given slant path Pr(Ar > 0).

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • el (sequence, or number) – Elevation angle (degrees)
  • hs (number, sequence, or numpy.ndarray, optional) – Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
  • Ls (number, sequence, or numpy.ndarray, optional) – Slant path length from the earth station to the rain height (km). If data about the rain height is not available, this value is estimated automatically using Recommendation ITU-R P.838
  • P0 (number, sequence, or numpy.ndarray, optional) – Probability of rain at the earth station, (0 ≤ P0 ≤ 1)
Returns:

p – Probability of rain attenuation on the slant path (%)

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf

itur.models.itu618.site_diversity_rain_outage_probability(lat1, lon1, a1, el1, lat2, lon2, a2, el2, f, tau=45, hs1=None, hs2=None)[source]

Calculate the link outage probability in a diversity based scenario (two ground stations) due to rain attenuation. This method is valid for frequencies below 20 GHz, as at higher frequencies other impairments might affect affect site diversity performance.

This method predicts Pr(A1 > a1, A2 > a2), the joint probability (%) that the attenuation on the path to the first site is greater than a1 and the attenuation on the path to the second site is greater than a2.

Parameters:
  • lat1 (number or Quantity) – Latitude of the first ground station (deg)
  • lon1 (number or Quantity) – Longitude of the first ground station (deg)
  • a1 (number or Quantity) – Maximum admissible attenuation of the first ground station (dB)
  • el1 (number or Quantity) – Elevation angle to the first ground station (deg)
  • lat2 (number or Quantity) – Latitude of the second ground station (deg)
  • lon2 (number or Quantity) – Longitude of the second ground station (deg)
  • a2 (number or Quantity) – Maximum admissible attenuation of the second ground station (dB)
  • el2 (number or Quantity) – Elevation angle to the second ground station (deg)
  • f (number or Quantity) – Frequency (GHz)
  • tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
  • hs1 (number or Quantity, optional) – Altitude over the sea level of the first ground station (km). If not provided, uses Recommendation ITU-R P.1511 to compute the toporgraphic altitude
  • hs2 (number or Quantity, optional) – Altitude over the sea level of the first ground station (km). If not provided, uses Recommendation ITU-R P.1511 to compute the toporgraphic altitude
Returns:

probability – Joint probability (%) that the attenuation on the path to the first site is greater than a1 and the attenuation on the path to the second site is greater than a2

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf

itur.models.itu618.scintillation_attenuation(lat, lon, f, el, p, D, eta=0.5, T=None, H=None, P=None, hL=1000)[source]

Calculation of monthly and long-term statistics of amplitude scintillations at elevation angles greater than 5° and frequencies up to 20 GHz.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • f (number or Quantity) – Frequency (GHz)
  • el (sequence, or number) – Elevation angle (degrees)
  • p (number) – Percentage of the time the scintillation attenuation value is exceeded.
  • D (number) – Physical diameter of the earth-station antenna (m)
  • eta (number, optional) – Antenna efficiency. Default value 0.5 (conservative estimate)
  • T (number, sequence, or numpy.ndarray, optional) – Average surface ambient temperature (°C) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
  • H (number, sequence, or numpy.ndarray, optional) – Average surface relative humidity (%) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
  • P (number, sequence, or numpy.ndarray, optional) – Average surface pressure (hPa) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
  • hL (number, optional) – Height of the turbulent layer (m). Default value 1000 m
Returns:

attenuation – Attenuation due to scintillation (dB)

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf

itur.models.itu618.scintillation_attenuation_sigma(lat, lon, f, el, p, D, eta=0.5, T=None, H=None, P=None, hL=1000)[source]

Calculation of the standard deviation of the amplitude of the scintillations attenuation at elevation angles greater than 5° and frequencies up to 20 GHz.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • f (number or Quantity) – Frequency (GHz)
  • el (sequence, or number) – Elevation angle (degrees)
  • p (number) – Percentage of the time the scintillation attenuation value is exceeded.
  • D (number) – Physical diameter of the earth-station antenna (m)
  • eta (number, optional) – Antenna efficiency. Default value 0.5 (conservative estimate)
  • T (number, sequence, or numpy.ndarray, optional) – Average surface ambient temperature (°C) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
  • H (number, sequence, or numpy.ndarray, optional) – Average surface relative humidity (%) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
  • P (number, sequence, or numpy.ndarray, optional) – Average surface pressure (hPa) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
  • hL (number, optional) – Height of the turbulent layer (m). Default value 1000 m
Returns:

attenuation – Attenuation due to scintillation (dB)

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf

itur.models.itu618.rain_cross_polarization_discrimination(Ap, f, el, p, tau=45)[source]

Calculation of the cross-polarization discrimination (XPD) statistics from rain attenuation statistics. The following procedure provides estimates of the long-term statistics of the cross-polarization discrimination (XPD) statistics for frequencies up to 55 GHz and elevation angles lower than 60 deg.

Parameters:
  • Ap (number, sequence, or numpy.ndarray) – Rain attenuation (dB) exceeded for the required percentage of time, p, for the path in question, commonly called co-polar attenuation (CPA)
  • f (number) – Frequency
  • el (number, sequence, or numpy.ndarray) – Elevation angle (degrees)
  • p (number) – Percentage of the time the XPD is exceeded.
  • tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
Returns:

attenuation – Cross-polarization discrimination (dB)

Return type:

Quantity

References

[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf

itur.models.itu618.fit_rain_attenuation_to_lognormal(lat, lon, f, el, hs, P_k, tau)[source]

Compute the log-normal fit of rain attenuation vs. probability of occurrence.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • f (number or Quantity) – Frequency (GHz)
  • el (sequence, or number) – Elevation angle (degrees)
  • hs (number, sequence, or numpy.ndarray, optional) – Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
  • P_k (number) – Rain probability
  • tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
Returns:

  • sigma_lna – Standar deviation of the lognormal distribution
  • m_lna – Mean of the lognormal distribution

References

[1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf

Recommendation ITU-R P.676

This Recommendation provides methods to estimate the attenuation of atmospheric gases on terrestrial and slant paths

Title PDF Latest approved in
Recommendation ITU-R P.676 [PDF] 2019-08
Attenuation by atmospheric gases and related effects
Current recommendation version (In force)   Date
Recommendation ITU-R P.676-12 [PDF] 08/2019
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.676-12 [PDF] 08/2019
Recommendation ITU-R P.676-11 [PDF] 09/2016
Recommendation ITU-R P.676-10 [PDF] 09/2013
Recommendation ITU-R P.676-9 [PDF] 02/2012
Recommendations not implemented in ITU-Rpy   Date
Recommendation ITU-R P.676-8 [PDF] 10/2009
Recommendation ITU-R P.676-7 [PDF] 02/2007
Recommendation ITU-R P.676-6 [PDF] 03/2005
Recommendation ITU-R P.676-5 [PDF] 02/2001
Recommendation ITU-R P.676-4 [PDF] 10/1999
Recommendation ITU-R P.676-3 [PDF] 08/1997
Recommendation ITU-R P.676-2 [PDF] 10/1995
Recommendation ITU-R P.676-1 [PDF] 03/1992
Introduction

This Recommendation provides the following three methods of predicting the specific and path gaseous attenuation due to oxygen and water vapour:

  • Calculation of specific and path gaseous attenuation using the line-by-line summation assuming the atmospheric pressure, temperature, and water vapour density vs. height;
  • An approximate estimate of specific and path gaseous attenuation assuming the water vapour density at the surface of the Earth;
  • An approximate estimate of path attenuation assuming the integrated water vapour content along the path.

These prediction methods can use local meteorological data, or reference atmospheres or meteorological maps corresponding to a desired probability of exceedance that are provided in other ITU-R P-series Recommendations. In the absence of local data, a combination of: a) the reference atmospheric profiles given in Recommendation ITU-R P.835 may be used, b) the mean annual global reference atmosphere given in Recommendation ITU-R P.835, c) the map of mean annual surface temperature in Recommendation ITU-R P.1510 and d) the maps of surface water vapour density vs. exceedance probability given in Recommendation ITU-R P.836 may be used in lieu of the standard ground-level surface water vapour density of 7.5 g/m3.

The method to compute an estimate of gaseous attenuation computed by a summation of individual absorption lines that is valid for the frequency range 1-1 000 GHz, and the method to compute a simplified approximate method to estimate gaseous attenuation that is applicable in the frequency range 1-350 GHz.

Module description
itur.models.itu676.change_version(new_version)[source]

Change the version of the ITU-R P.676 recommendation currently being used.

This function changes the model used for the ITU-R P.676 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 12: Activates recommendation ITU-R P.676-12 (08/19) (Current version)
  • 11: Activates recommendation ITU-R P.676-11 (09/16) (Superseded)
  • 10: Activates recommendation ITU-R P.676-10 (09/13) (Superseded)
  • 9: Activates recommendation ITU-R P.676-9 (02/12) (Superseded)
itur.models.itu676.get_version()[source]

Obtain the version of the ITU-R P.676 recommendation currently being used.

Returns:version – The version of the ITU-R P.530 recommendation being used.
Return type:int
itur.models.itu676.gaseous_attenuation_terrestrial_path(r, f, el, rho, P, T, mode)[source]

Estimate the attenuation of atmospheric gases on terrestrial paths. This function operates in two modes, ‘approx’, and ‘exact’:

  • ‘approx’: a simplified approximate method to estimate gaseous attenuation that is applicable in the frequency range 1-350 GHz.
  • ‘exact’: an estimate of gaseous attenuation computed by summation of individual absorption lines that is valid for the frequency range 1-1,000 GHz
Parameters:
  • r (number or Quantity) – Path length (km)
  • f (number or Quantity) – Frequency (GHz)
  • el (sequence, number or Quantity) – Elevation angle (degrees)
  • rho (number or Quantity) – Water vapor density (g/m**3)
  • P (number or Quantity) – Atmospheric pressure (hPa)
  • T (number or Quantity) – Absolute temperature (K)
  • mode (string, optional) – Mode for the calculation. Valid values are ‘approx’, ‘exact’. If ‘approx’ Uses the method in Annex 2 of the recommendation (if any), else uses the method described in Section 1. Default, ‘approx’
Returns:

attenuation – Terrestrial path attenuation (dB)

Return type:

Quantity

References

[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en

itur.models.itu676.gaseous_attenuation_slant_path(f, el, rho, P, T, V_t=None, h=None, mode='approx')[source]

Estimate the attenuation of atmospheric gases on slant paths. This function operates in two modes, ‘approx’, and ‘exact’:

  • ‘approx’: a simplified approximate method to estimate gaseous attenuation that is applicable in the frequency range 1-350 GHz.
  • ‘exact’: an estimate of gaseous attenuation computed by summation of individual absorption lines that is valid for the frequency range 1-1,000 GHz
Parameters:
  • f (number or Quantity) – Frequency (GHz)
  • el (sequence, number or Quantity) – Elevation angle (degrees)
  • rho (number or Quantity) – Water vapor density (g/m3)
  • P (number or Quantity) – Atmospheric pressure (hPa)
  • T (number or Quantity) – Absolute temperature (K)
  • V_t (number or Quantity (kg/m2)) – Integrated water vapour content from: a) local radiosonde or radiometric data or b) at the required percentage of time (kg/m2) obtained from the digital maps in Recommendation ITU-R P.836 (kg/m2). If None, use general method to compute the wet-component of the gaseous attenuation. If provided, ‘h’ must be also provided. Default is None.
  • h (number, sequence, or numpy.ndarray) – Altitude of the receivers. If None, use the topographical altitude as described in recommendation ITU-R P.1511. If provided, ‘V_t’ needs to be also provided. Default is None.
  • mode (string, optional) – Mode for the calculation. Valid values are ‘approx’, ‘exact’. If ‘approx’ Uses the method in Annex 2 of the recommendation (if any), else uses the method described in Section 1. Default, ‘approx’
Returns:

attenuation – Slant path attenuation (dB)

Return type:

Quantity

References

[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en

itur.models.itu676.gaseous_attenuation_inclined_path(f, el, rho, P, T, h1, h2, mode='approx')[source]

Estimate the attenuation of atmospheric gases on inclined paths between two ground stations at heights h1 and h2. This function operates in two modes, ‘approx’, and ‘exact’:

  • ‘approx’: a simplified approximate method to estimate gaseous attenuation that is applicable in the frequency range 1-350 GHz.
  • ‘exact’: an estimate of gaseous attenuation computed by summation of individual absorption lines that is valid for the frequency range 1-1,000 GHz
Parameters:
  • f (number or Quantity) – Frequency (GHz)
  • el (sequence, number or Quantity) – Elevation angle (degrees)
  • rho (number or Quantity) – Water vapor density (g/m3)
  • P (number or Quantity) – Atmospheric pressure (hPa)
  • T (number or Quantity) – Absolute temperature (K)
  • h1 (number or Quantity) – Height of ground station 1 (km)
  • h2 (number or Quantity) – Height of ground station 2 (km)
  • mode (string, optional) – Mode for the calculation. Valid values are ‘approx’, ‘exact’. If ‘approx’ Uses the method in Annex 2 of the recommendation (if any), else uses the method described in Section 1. Default, ‘approx’
Returns:

attenuation – Inclined path attenuation (dB)

Return type:

Quantity

References

[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en

itur.models.itu676.slant_inclined_path_equivalent_height(f, p, rho=7.5, T=298.15)[source]

Computes the equivalent height to be used for oxygen and water vapour gaseous attenuation computations.

Parameters:
  • f (number or Quantity) – Frequency (GHz)
  • p (number) – Percentage of the time the gaseous attenuation value is exceeded.
  • rho (number or Quantity) – Water vapor density (g/m3)
  • P (number or Quantity) – Atmospheric pressure (hPa)
  • T (number or Quantity) – Absolute temperature (K)
Returns:

ho, hw – Equivalent height for oxygen and water vapour (m)

Return type:

Quantity

References

[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en

itur.models.itu676.zenit_water_vapour_attenuation(lat, lon, p, f, V_t=None, h=None)[source]

An alternative method may be used to compute the slant path attenuation by water vapour, in cases where the integrated water vapour content along the path, V_t, is known.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • p (number) – Percentage of the time the zenit water vapour attenuation value is exceeded.
  • f (number or Quantity) – Frequency (GHz)
  • V_t (number or Quantity, optional) – Integrated water vapour content along the path (kg/m2 or mm). If not provided this value is estimated using Recommendation ITU-R P.836. Default value None
  • h (number, sequence, or numpy.ndarray) – Altitude of the receivers. If None, use the topographical altitude as described in recommendation ITU-R P.1511
Returns:

A_w – Water vapour attenuation along the slant path (dB)

Return type:

Quantity

References

[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en

itur.models.itu676.gammaw_approx(f, P, rho, T)[source]

Method to estimate the specific attenuation due to water vapour using the approximate method descibed in Annex 2.

Parameters:
  • f (number or Quantity) – Frequency (GHz)
  • P (number or Quantity) – Atmospheric pressure (hPa)
  • rho (number or Quantity) – Water vapor density (g/m3)
  • T (number or Quantity) – Absolute temperature (K)
Returns:

gamma_w – Water vapour specific attenuation (dB/km)

Return type:

Quantity

References

[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en

itur.models.itu676.gamma0_approx(f, P, rho, T)[source]

Method to estimate the specific attenuation due to dry atmosphere using the approximate method descibed in Annex 2.

Parameters:
  • f (number or Quantity) – Frequency (GHz)
  • P (number or Quantity) – Atmospheric pressure (hPa)
  • rho (number or Quantity) – Water vapor density (g/m3)
  • T (number or Quantity) – Absolute temperature (K)
Returns:

gamma_w – Dry atmosphere specific attenuation (dB/km)

Return type:

Quantity

References

[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en

itur.models.itu676.gammaw_exact(f, P, rho, T)[source]

Method to estimate the specific attenuation due to water vapour using the line-by-line method described in Annex 1 of the recommendation.

Parameters:
  • f (number or Quantity) – Frequency (GHz)
  • P (number or Quantity) – Atmospheric pressure (hPa)
  • rho (number or Quantity) – Water vapor density (g/m3)
  • T (number or Quantity) – Absolute temperature (K)
Returns:

gamma_w – Water vapour specific attenuation (dB/km)

Return type:

Quantity

References

[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en

itur.models.itu676.gamma0_exact(f, P, rho, T)[source]

Method to estimate the specific attenuation due to dry atmosphere using the line-by-line method described in Annex 1 of the recommendation.

Parameters:
  • f (number or Quantity) – Frequency (GHz)
  • P (number or Quantity) – Atmospheric pressure (hPa)
  • rho (number or Quantity) – Water vapor density (g/m3)
  • T (number or Quantity) – Absolute temperature (K)
Returns:

gamma_w – Dry atmosphere specific attenuation (dB/km)

Return type:

Quantity

References

[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en

itur.models.itu676.gamma_exact(f, P, rho, T)[source]

Method to estimate the specific attenuation using the line-by-line method described in Annex 1 of the recommendation.

Parameters:
  • f (number or Quantity) – Frequency (GHz)
  • P (number or Quantity) – Atmospheric pressure (hPa)
  • rho (number or Quantity) – Water vapor density (g/m3)
  • T (number or Quantity) – Absolute temperature (K)
Returns:

gamma – Specific attenuation (dB/km)

Return type:

Quantity

References

[1] Attenuation by atmospheric gases: https://www.itu.int/rec/R-REC-P.676/en

Recommendation ITU-R P.835

This Recommendation provides expressions and data for reference standard atmospheres required for the calculation of gaseous attenuation on Earth-space paths.

Title PDF Latest approved in
Recommendation ITU-R P.835 [PDF] 2017-12
Reference Standard Atmospheres
Current recommendation version (In force)   Date
Recommendation ITU-R P.835-6 [PDF] 12/2017
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.835-6 [PDF] 12/2017
Recommendation ITU-R P.835-5 [PDF] 02/2012
Recommendations not implemented in ITU-Rpy   Date
Recommendation ITU-R P.835-4 [PDF] 03/2005
Recommendation ITU-R P.835-3 [PDF] 10/1999
Recommendation ITU-R P.835-2 [PDF] 08/1997
Recommendation ITU-R P.835-1 [PDF] 08/1994
Introduction

This recommendation provides the equations to determine the temperature, pressure and water-vapour pressure as a function of altitude, as described in the U.S. Standard Atmosphere 1976. These values should be used for calculating gaseous attenuation when more reliable local data are not available.

Module description
itur.models.itu835.change_version(new_version)[source]

Change the version of the ITU-R P.835 recommendation currently being used.

This function changes the model used for the ITU-R P.835 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 6: Activates recommendation ITU-R P.835-6 (12/17) (Current version)
  • 5: Activates recommendation ITU-R P.835-5 (02/12) (Superseded)
itur.models.itu835.get_version()[source]

The version of the model currently in use for the ITU-R P.835 recommendation.

Obtain the version of the ITU-R P.835 recommendation currently being used.

Returns:version – The version of the ITU-R P.835 recommendation being used.
Return type:int
itur.models.itu835.temperature(lat, h, season='summer')[source]

Determine the temperature at a given latitude and height.

Method to determine the temperature as a function of altitude and latitude, for calculating gaseous attenuation along an Earth-space path. This method is recommended when more reliable local data are not available.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • h (number or Quantity) – Height (km)
  • season (string) – Season of the year (available values, ‘summer’, and ‘winter’). Default ‘summer’
Returns:

T – Temperature (K)

Return type:

Quantity

References

[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en

itur.models.itu835.pressure(lat, h, season='summer')[source]

Determine the atmospheric pressure at a given latitude and height.

Method to determine the pressure as a function of altitude and latitude, for calculating gaseous attenuation along an Earth-space path. This method is recommended when more reliable local data are not available.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • h (number or Quantity) – Height (km)
  • season (string) – Season of the year (available values, ‘summer’, and ‘winter’). Default ‘summer’
Returns:

P – Pressure (hPa)

Return type:

Quantity

References

[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en

itur.models.itu835.water_vapour_density(lat, h, season='summer')[source]

Determine the water vapour density at a given latitude and height.

Method to determine the water-vapour density as a function of altitude and latitude, for calculating gaseous attenuation along an Earth-space path. This method is recommended when more reliable local data are not available.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • h (number or Quantity) – Height (km)
  • season (string) – Season of the year (available values, ‘summer’, and ‘winter’). Default ‘summer’
Returns:

rho – Water vapour density (g/m^3)

Return type:

Quantity

References

[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en

itur.models.itu835.standard_temperature(h, T_0=288.15)[source]

Determine the standard temperature at a given height.

Method to compute the temperature of an standard atmosphere at a given height. The reference standard atmosphere is based on the United States Standard Atmosphere, 1976, in which the atmosphere is divided into seven successive layers showing linear variation with temperature.

Parameters:
  • h (number or Quantity) – Height (km)
  • T_0 (number or Quantity) – Surface temperature (K)
Returns:

T – Temperature (K)

Return type:

Quantity

References

[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en

itur.models.itu835.standard_pressure(h, T_0=288.15, P_0=1013.25)[source]

Determine the standard pressure at a given height.

Method to compute the total atmopsheric pressure of an standard atmosphere at a given height.

The reference standard atmosphere is based on the United States Standard Atmosphere, 1976, in which the atmosphere is divided into seven successive layers showing linear variation with temperature.

Parameters:
  • h (number or Quantity) – Height (km)
  • T_0 (number or Quantity) – Surface temperature (K)
  • P_0 (number or Quantity) – Surface pressure (hPa)
Returns:

P – Pressure (hPa)

Return type:

Quantity

References

[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en

itur.models.itu835.standard_water_vapour_density(h, h_0=2, rho_0=7.5)[source]

Determine the standard water vapour density at a given height.

The reference standard atmosphere is based on the United States Standard Atmosphere, 1976, in which the atmosphere is divided into seven successive layers showing linear variation with temperature.

Parameters:
  • h (number or Quantity) – Height (km)
  • h_0 (number or Quantity) – Scale height (km)
  • rho_0 (number or Quantity) – Surface water vapour density (g/m^3)
Returns:

rho – Water vapour density (g/m^3)

Return type:

Quantity

References

[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en

itur.models.itu835.standard_water_vapour_pressure(h, h_0=2, rho_0=7.5)[source]

Determine the standard water vapour pressure at a given height.

The reference standard atmosphere is based on the United States Standard Atmosphere, 1976, in which the atmosphere is divided into seven successive layers showing linear variation with temperature.

Parameters:
  • h (number or Quantity) – Height (km)
  • h_0 (number or Quantity) – Scale height (km)
  • rho_0 (number or Quantity) – Surface water vapour density (g/m^3)
Returns:

e – Water vapour pressure (hPa)

Return type:

Quantity

References

[1] Reference Standard Atmospheres https://www.itu.int/rec/R-REC-P.835/en

Recommendation ITU-R P.836

This Recommendation provides methods to predict the surface water vapour density and total columnar water vapour content on Earth-space paths.

Title PDF Latest approved in
Recommendation ITU-R P.836 [PDF] 2017-12
surface density and total columnar content
Current recommendation version (In force)   Date
Recommendation ITU-R P.836-6 [PDF] 12/2017
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.836-6 [PDF] 12/2017
Recommendation ITU-R P.836-5 [PDF] 09/2013
Recommendation ITU-R P.836-4 [PDF] 10/2009
Recommendations not implemented in ITU-Rpy   Date
Recommendation ITU-R P.836-3 [PDF] 11/2001
Recommendation ITU-R P.836-2 [PDF] 02/2001
Recommendation ITU-R P.836-1 [PDF] 08/1997
Recommendation ITU-R P.836-0 [PDF] 03/1992
Introduction

Atmospheric water vapour and oxygen cause absorption at millimetre wavelengths especially in the proximity of absorption lines (see Recommendation ITU-R P.676). The concentration of atmospheric oxygen is relatively constant; however, the concentration of water vapour varies both geographically and with time.

For some applications, the total water vapour content along a path can be used for the calculation of excess path length and for the attenuation due to atmospheric water vapour, where the attenuation due to atmospheric water vapour is assumed to be proportional to the total water vapour content through its specific mass absorption coefficient.

This Recommendation provides method used for global calculations of propagation effects that require an estimate of surface water vapour density or total columnar content of water vapour and its seasonal variation, when more accurate local data are not available.

Module description
itur.models.itu836.change_version(new_version)[source]

Change the version of the ITU-R P.836 recommendation currently being used.

This function changes the model used for the ITU-R P.836 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 6: Activates recommendation ITU-R P.836-6 (12/17) (Current version)
  • 5: Activates recommendation ITU-R P.836-5 (09/13) (Superseded)
  • 4: Activates recommendation ITU-R P.836-4 (10/09) (Superseded)
itur.models.itu836.get_version()[source]

Obtain the version of the ITU-R P.836 recommendation currently being used.

Returns:version – Version currently being used.
Return type:int
itur.models.itu836.surface_water_vapour_density(lat, lon, p, alt=None)[source]

Compute the surface water vapour density along a path.

This method computes the surface water vapour density along a path at a desired location on the surface of the Earth.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • p (number) – Percentage of time exceeded for p% of the average year
  • alt (number, sequence, or numpy.ndarray) – Altitude of the receivers. If None, use the topographical altitude as described in recommendation ITU-R P.1511
Returns:

rho – Surface water vapour density (g/m3)

Return type:

Quantity

References

[1] Water vapour: surface density and total columnar content https://www.itu.int/rec/R-REC-P.836/en

itur.models.itu836.total_water_vapour_content(lat, lon, p, alt=None)[source]

Compute the total water vapour content along a path.

This method computes the total water vapour content along a path at a desired location on the surface of the Earth.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • p (number) – Percentage of time exceeded for p% of the average year
  • alt (number, sequence, or numpy.ndarray) – Altitude of the receivers. If None, use the topographical altitude as described in recommendation ITU-R P.1511
Returns:

V – Total water vapour content (kg/m2)

Return type:

Quantity

References

[1] Water vapour: surface density and total columnar content https://www.itu.int/rec/R-REC-P.836/en

Recommendation ITU-R P.837

This Recommendation provides a method to compute the characteristics of precipitation for propagation modelling

Title PDF Latest approved in
Recommendation ITU-R P.837 [PDF] 2017-06
Characteristics of precipitation for propagation modelling
Current recommendation version (In force)   Date
Recommendation ITU-R P.837-7 [PDF] 06/2017
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.837-7 [PDF] 06/2017
Recommendation ITU-R P.837-6 [PDF] 02/2012
Recommendations not implemented in ITU-Rpy   Date
Recommendation ITU-R P.837-5 [PDF] 08/2007
Recommendation ITU-R P.837-4 [PDF] 04/2003
Recommendation ITU-R P.837-3 [PDF] 02/2001
Recommendation ITU-R P.837-2 [PDF] 10/1999
Recommendation ITU-R P.837-1 [PDF] 08/1994
Introduction

Rainfall rate statistics with a 1-min integration time are required for the prediction of rain attenuation in terrestrial and satellite links. Data of long-term measurements of rainfall rate may be available from local sources, but only with higher integration times. This Recommendation provides maps of meteorological parameters that have been obtained using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-40 re-analysis database, which are recommended for the prediction of rainfall rate statistics with a 1-min integration time, when local measurements are missing.

Module description
itur.models.itu837.change_version(new_version)[source]

Change the version of the ITU-R P.837 recommendation currently being used.

This function changes the model used for the ITU-R P.837 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 7: Activates recommendation ITU-R P.837-7 (12/17) (Current version)
  • 6: Activates recommendation ITU-R P.837-6 (02/12) (Superseded)
itur.models.itu837.get_version()[source]

Obtain the version of the ITU-R P.837 recommendation currently being used.

Returns:version – Version currently being used.
Return type:int
itur.models.itu837.rainfall_probability(lat, lon)[source]

Compute the percentage probability of rain in an average year, P0, at a given location.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns:

P0 – Percentage probability of rain in an average year (%)

Return type:

numpy.ndarray

References

[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.837/en

itur.models.itu837.rainfall_rate(lat, lon, p)[source]

Compute the rainfall rate exceeded for p% of the average year at a given location.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • p (number) – Percentage of time exceeded for p% of the average year
Returns:

R001 – Rainfall rate exceeded for p% of the average year

Return type:

numpy.ndarray

References

[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.837/en

itur.models.itu837.unavailability_from_rainfall_rate(lat, lon, R)[source]

Compute the percentage of time of the average year that a given rainfall rate (R) is exceeded at a given location

This method calls successively to rainfall_rate (sing bisection) with different values of p.

Note: This method cannot operate in a vectorized manner.

Parameters:
  • lat (number) – Latitude of the receiver point
  • lon (number) – Longitude of the receiver point
  • R (number, sequence, or numpy.ndarray) – Rainfall rate (mm/h)
Returns:

p – Rainfall rate exceeded for p% of the average year

Return type:

numpy.ndarray

References

[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.837/en

Recommendation ITU-R P.838

This Recommendation provides a method to compute the specific attenuation for rain for use in prediction methods.

Title PDF Latest approved in
Recommendation ITU-R P.838 [PDF] 2005-03
Specific attenuation model for rain for use in prediction methods
Current recommendation version (In force)   Date
Recommendation ITU-R P.838-3 [PDF] 03/2005
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.838-3 [PDF] 03/2005
Recommendation ITU-R P.838-2 [PDF] 04/2003
Recommendation ITU-R P.838-1 [PDF] 10/1999
Recommendation ITU-R P.838-0 [PDF] 03/1992
Introduction

The specific attenuation \(\gamma_R\) (dB/km) is obtained from the rain rate \(R:math:\) (mm/h) using the power-law relationship:

\[\gamma_R = k R^{\alpha}\]

Values for the coefficients \(k\) and \(\alpha\) are determined as functions of frequency, f (GHz), and this recommendation provides value valid in the range from 1 to 1 000 GHz. The models from Recommendation ITU-R P.838 have been developed from curve-fitting to power-law coefficients derived from scattering calculations:

Module description
itur.models.itu838.change_version(new_version)[source]

Change the version of the ITU-R P.838 recommendation currently being used.

This function changes the model used for the ITU-R P.838 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 3: Activates recommendation ITU-R P.838-3 (03/05) (Current version)
  • 2: Activates recommendation ITU-R P.838-2 (04/03) (Superseded)
  • 1: Activates recommendation ITU-R P.838-1 (10/99) (Superseded)
  • 0: Activates recommendation ITU-R P.838-0 (03/92) (Superseded)
itur.models.itu838.get_version()[source]

Obtain the version of the ITU-R P.838 recommendation currently being used.

Returns:version – Version currently being used.
Return type:int
itur.models.itu838.rain_specific_attenuation_coefficients(f, el, tau)[source]

Compute the values for the coefficients k and α.

A method to compute the values for the coefficients k and α to compute the rain specific attenuation \(\gamma_R\) (dB/km) (dB/km)

Parameters:
  • f (number or Quantity) – Frequency (GHz)
  • el (number, sequence, or numpy.ndarray) – Elevation angle of the receiver points
  • tau (number, sequence, or numpy.ndarray) – Polarization tilt angle relative to the horizontal (degrees). Tau = 45 deg for circular polarization)
Returns:

  • k (number) – Coefficient k (non-dimensional)
  • α (number) – Coefficient α (non-dimensional)

References

[1] Rain height model for prediction methods: https://www.itu.int/rec/R-REC-P.838/en

itur.models.itu838.rain_specific_attenuation(R, f, el, tau)[source]

Compute the specific attenuation γ_R (dB/km) given the rainfall rate.

A method to compute the specific attenuation γ_R (dB/km) from rain. The value is obtained from the rainfall rate R (mm/h) using a power law relationship.

\[\gamma_R = k R^\alpha\]
Parameters:
  • R (number, sequence, numpy.ndarray or Quantity) – Rain rate (mm/h)
  • f (number or Quantity) – Frequency (GHz)
  • el (number, sequence, or numpy.ndarray) – Elevation angle of the receiver points
  • tau (number, sequence, or numpy.ndarray) – Polarization tilt angle relative to the horizontal (degrees). Tau = 45 deg for circular polarization)
Returns:

γ_R – Specific attenuation from rain (dB/km)

Return type:

numpy.ndarray

References

[1] Rain height model for prediction methods: https://www.itu.int/rec/R-REC-P.838/en

Recommendation ITU-R P.839

This Recommendation provides a method to predict the rain height for propagation prediction.

Title PDF Latest approved in
Recommendation ITU-R P.839 [PDF] 2013-09
Rain height model for prediction methods
Current recommendation version (In force)   Date
Recommendation ITU-R P.839-4 [PDF] 09/2013
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.839-4 [PDF] 09/2013
Recommendation ITU-R P.839-3 [PDF] 02/2001
Recommendation ITU-R P.839-2 [PDF] 10/1999
Recommendations not implemented in ITU-Rpy   Date
Recommendation ITU-R P.839-1 [PDF] 08/1997
Recommendation ITU-R P.839-0 [PDF] 03/1992
Introduction

The mean annual rain height above mean sea level, hR, may be obtained from the 0° C isotherm as:

\[h_R = h_0 + 0.36 \qquad \text{km}\]

for areas of the world where no specific information is available, the mean annual 0° C isotherm height above mean sea level, h0, is an integral part of this Recommendation. The data is provided from 0° to 360° in longitude and from +90° to –90° in latitude. For a location different from the grid-points, the mean annual 0° C isotherm height above mean sea level at the desired location can be derived by performing a bilinear interpolation on the values at the four closest gridpoints.

Module description
itur.models.itu839.change_version(new_version)[source]

Change the version of the ITU-R P.839 recommendation currently being used.

This function changes the model used for the ITU-R P.839 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 4: Activates recommendation ITU-R P.839-4 (09/2013) (Current version)
  • 3: Activates recommendation ITU-R P.839-3 (02/01) (Superseded)
  • 2: Activates recommendation ITU-R P.839-2 (10/99) (Superseded)
itur.models.itu839.get_version()[source]

Obtain the version of the ITU-R P.839 recommendation currently being used.

Returns:version – Version currently being used.
Return type:int
itur.models.itu839.isoterm_0(lat, lon)[source]

Estimate the zero degree Celsius isoterm height for propagation prediction.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns:

h0 – Zero degree Celsius isoterm height (km)

Return type:

numpy.ndarray

References

[1] Rain height model for prediction methods: https://www.itu.int/rec/R-REC-P.839/en

itur.models.itu839.rain_height(lat, lon)[source]

Estimate the annual mean rain height for propagation prediction.

The mean annual rain height above mean sea level, \(h_R\), may be obtained from the 0° C isotherm as:

\[h_R = h_0 + 0.36 \qquad \text{km}\]
Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns:

hR – Annual mean rain height (km)

Return type:

numpy.ndarray

References

[1] Rain height model for prediction methods: https://www.itu.int/rec/R-REC-P.839/en

Recommendation ITU-R P.840

This Recommendation provides methods to predict the attenuation due to clouds and fog on Earth-space paths.

Title PDF Latest approved in
Recommendation ITU-R P.840 [PDF] 2019-08
Attenuation due to clouds and fog
Current recommendation version (In force)   Date
Recommendation ITU-R P.840-8 [PDF] 08/2019
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.840-8 [PDF] 08/2019
Recommendation ITU-R P.840-7 [PDF] 12/2017
Recommendation ITU-R P.840-6 [PDF] 09/2013
Recommendation ITU-R P.840-5 [PDF] 02/2012
Recommendation ITU-R P.840-4 [PDF] 10/2009
Recommendations not implemented in ITU-Rpy   Date
Recommendation ITU-R P.840-3 [PDF] 10/1999
Recommendation ITU-R P.840-2 [PDF] 08/1997
Recommendation ITU-R P.840-1 [PDF] 08/1994
Introduction

For clouds or fog consisting entirely of small droplets, generally less than 0.01 cm, the Rayleigh approximation is valid for frequencies below 200 GHz and it is possible to express the attenuation in terms of the total water content per unit volume. Thus the specific attenuation within a cloud or fog can be written as:

\[\gamma_c(f, T) = M \cdot K_l(f, T) \qquad \text{[dB/km]}\]
where:
  • \(\gamma_c\) : specific attenuation (dB/km) within the cloud;
  • \(K_l\) : specific attenuation coefficient ((dB/km)/(g/m3));
  • \(M\) : liquid water density in the cloud or fog (g/m3).
  • \(f\) : frequency (GHz).
  • \(T\) : cloud liquid water temperature (K).

At frequencies of the order of 100 GHz and above, attenuation due to fog may be significant. The liquid water density in fog is typically about 0.05 g/m3 for medium fog (visibility of the order of 300 m) and 0.5 g/m3 for thick fog (visibility of the order of 50 m).

Module description
itur.models.itu840.change_version(new_version)[source]

Change the version of the ITU-R P.840 recommendation currently being used.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 8: Activates recommendation ITU-R P.840-8 (08/19) (Current version)
  • 7: Activates recommendation ITU-R P.840-7 (12/17) (Superseded)
  • 6: Activates recommendation ITU-R P.840-6 (09/13) (Superseded)
  • 5: Activates recommendation ITU-R P.840-5 (02/12) (Superseded)
  • 4: Activates recommendation ITU-R P.840-4 (10/09) (Superseded)
itur.models.itu840.get_version()[source]

Obtain the version of the ITU-R P.840 recommendation currently being used.

Returns:version – Version currently being used.
Return type:int
itur.models.itu840.specific_attenuation_coefficients(f, T)[source]

Compute the specific attenuation coefficient for cloud attenuation.

A method to compute the specific attenuation coefficient. The method is based on Rayleigh scattering, which uses a double-Debye model for the dielectric permittivity of water.

This model can be used to calculate the value of the specific attenuation coefficient for frequencies up to 1000 GHz:

Parameters:
  • f (number) – Frequency (GHz)
  • T (number) – Temperature (degrees C)
Returns:

Kl – Specific attenuation coefficient (dB/km)

Return type:

numpy.ndarray

References

[1] Attenuation due to clouds and fog: https://www.itu.int/rec/R-REC-P.840/en

itur.models.itu840.columnar_content_reduced_liquid(lat, lon, p)[source]

Compute the total columnar contents of reduced cloud liquid water.

A method to compute the total columnar content of reduced cloud liquid water, Lred (kg/m2), exceeded for p% of the average year

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • p (number) – Percentage of time exceeded for p% of the average year
Returns:

Lred – Total columnar content of reduced cloud liquid water, Lred (kg/m2), exceeded for p% of the average year

Return type:

numpy.ndarray

References

[1] Attenuation due to clouds and fog: https://www.itu.int/rec/R-REC-P.840/en

itur.models.itu840.cloud_attenuation(lat, lon, el, f, p, Lred=None)[source]

Compute the cloud attenuation in a slant path.

A method to estimate the attenuation due to clouds along slant paths for a given probability. If local measured data of the total columnar content of cloud liquid water reduced to a temperature of 273.15 K, Lred, is available from other sources, (e.g., from ground radiometric measurements, Earth observation products, or meteorological numerical products), the value should be used directly.

The value of the cloud attenuation is computed as:

\[A=\frac{L_{red}(\text{lat}, \text{lon}, p, T) \cdot K_l(f, T)}{\sin(\text{el})}\]
where:
  • \(L_{red}\) : total columnar content of liquid water reduced to a temperature of 273.15 K (kg/m2);
  • \(K_l\) : specific attenuation coefficient ((dB/km)/(g/m3));
  • \(el\) : path elevation angle (deg).
  • \(f\) : frequency (GHz).
  • \(p\) : Percentage of time exceeded for p% of the average year (%).
  • \(T\) : temperature (K). Equal to 273.15 K.
Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • el (number, sequence, or numpy.ndarray) – Elevation angle of the receiver points (deg)
  • f (number) – Frequency (GHz)
  • p (number) – Percentage of time exceeded for p% of the average year
  • Lred (number) – Total columnar contents of reduced cloud liquid water. (kg/m2)
Returns:

A – Cloud attenuation, A (dB), exceeded for p% of the average year

Return type:

numpy.ndarray

References

[1] Attenuation due to clouds and fog: https://www.itu.int/rec/R-REC-P.840/en

itur.models.itu840.lognormal_approximation_coefficient(lat, lon)[source]

Total columnar contents of cloud liquid water distribution coefficients.

The annual statistics of the total columnar content of reduced cloud liquid water content can be approximated by a log-normal distribution. This function computes the coefficients for the mean, \(m\), standard deviation, \(\sigma\), and probability of non-zero reduced total columnar content of cloud liquid water, \(Pclw\), for such the log-normal distribution.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns:

  • m (numpy.ndarray) – Mean of the lognormal distribution
  • σ (numpy.ndarray) – Standard deviation of the lognormal distribution
  • Pclw (numpy.ndarray) – Probability of cloud liquid water of the lognormal distribution

References

[1] Attenuation due to clouds and fog: https://www.itu.int/rec/R-REC-P.840/en

Recommendation ITU-R P.1144

This Recommendation provides a guide to the Recommendations of Radiocommunication Study Group 3 which contain propagation prediction methods. It advises users on the most appropriate methods for particular applications as well as the limits, required input information, and output for each of these methods.

Title PDF Approved in
Recommendation ITU-R P.1144 [PDF] 2019-08
Guide to the application of the propagation methods of Radiocommunication Study Group 3
Latest Recommendation   Date
Recommendation ITU-R P.1144-10 [PDF] 08/2019
Introduction

Recommendation ITU-R P.1144 provides . In particular, the recommendation describes how to perform bi-linear and bi-cubic interpolation over the geophysical maps included in other recommendations.

Module description

Interpolation methods for the geophysical properties used to compute propagation effects. These methods are based on those in Recommendation ITU-R P.1144-7.

References

[1] Guide to the application of the propagation methods of Radiocommunication Study Group 3: https://www.itu.int/rec/R-REC-P.1144/en

itur.models.itu1144.is_regular_grid(lats_o, lons_o)[source]

Determinere whether the grids in lats_o and lons_o are both regular grids or not.

A grid is regular if the difference (column-wise or row-wise) between consecutive values is constant across the grid.

Parameters:
  • lats_o (numpy.ndarray) – Grid of latitude coordinates
  • lons_o (numpy.ndarray) – Grid of longitude coordinates
Returns:

is_regular

Return type:

boolean

itur.models.itu1144.nearest_2D_interpolator(lats_o, lons_o, values)[source]

Produces a 2D interpolator function using the nearest value interpolation method. If the grids are regular grids, uses the scipy.interpolate.RegularGridInterpolator, otherwise, scipy.intepolate.griddata

Values can be interpolated from the returned function as follows:

f = nearest_2D_interpolator(lat_origin, lon_origin, values_origin)
interp_values = f(lat_interp, lon_interp)
Parameters:
  • lats_o (numpy.ndarray) – Latitude coordinates of the values usde by the interpolator
  • lons_o (numpy.ndarray) – Longitude coordinates of the values usde by the interpolator
  • values (numpy.ndarray) – Values usde by the interpolator
Returns:

interpolator – Nearest neighbour interpolator function

Return type:

function

itur.models.itu1144.bilinear_2D_interpolator(lats_o, lons_o, values)[source]

Produces a 2D interpolator function using the bilinear interpolation method. If the grids are regular grids, uses the scipy.interpolate.RegularGridInterpolator, otherwise, scipy.intepolate.griddata

Values can be interpolated from the returned function as follows:

f = nearest_2D_interpolator(lat_origin, lon_origin, values_origin)
interp_values = f(lat_interp, lon_interp)
Parameters:
  • lats_o (numpy.ndarray) – Latitude coordinates of the values usde by the interpolator
  • lons_o (numpy.ndarray) – Longitude coordinates of the values usde by the interpolator
  • values (numpy.ndarray) – Values usde by the interpolator
Returns:

interpolator – Bilinear interpolator function

Return type:

function

itur.models.itu1144.bicubic_2D_interpolator(lats_o, lons_o, values)[source]

Produces a 2D interpolator function using the bicubic interpolation method. Uses the scipy.intepolate.griddata method.

Values can be interpolated from the returned function as follows:

f = nearest_2D_interpolator(lat_origin, lon_origin, values_origin)
interp_values = f(lat_interp, lon_interp)
Parameters:
  • lats_o (numpy.ndarray) – Latitude coordinates of the values usde by the interpolator
  • lons_o (numpy.ndarray) – Longitude coordinates of the values usde by the interpolator
  • values (numpy.ndarray) – Values usde by the interpolator
Returns:

interpolator – Bicubic interpolator function

Return type:

function

Recommendation ITU-R P.1510

This Recommendation contains monthly and annual maps of mean surface temperature that are recommended for the prediction of statistics of different propagation effects such as rainfall rate, rain attenuation and gaseous attenuation due to water vapour and oxygen.

Title PDF Latest approved in
Recommendation ITU-R P.1510 [PDF] 2017-06
Mean surface temperature
Current recommendation version (In force)   Date
Recommendation ITU-R P.1510-1 [PDF] 06/2017
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.1510-1 [PDF] 06/2017
Recommendation ITU-R P.1510-0 [PDF] 02/2001
Introduction

Recommendation ITU-R P.1510 contains monthly and annual maps of mean surface temperature that are recommended for the prediction of statistics of different propagation effects such as rainfall rate, rain attenuation and gaseous attenuation due to water vapour and oxygen.

The monthly and annual mean surface temperature data (K) at 2 m above the surface of the Earth is an integral part of this Recommendation, and is provided as a grid. The latitude grid is from −90° N to +90° N in 0.75° steps, and the longitude grid is from −180° E to +180° E in 0.75° steps.

The monthly mean surface temperature maps have been derived from 36 years (1979-2014) of European Centre of Medium-range Weather Forecast (ECMWF) ERA Interim data, and the annual mean surface temperature map is the average of the monthly mean surface temperature maps weighted by the relative number of days in each calendar month.

Module description
itur.models.itu1510.change_version(new_version)[source]

Change the version of the ITU-R P.1510 recommendation currently being used.

This function changes the model used for the ITU-R P.1510 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 1: Activates recommendation ITU-R P.1510-1 (06/17) (Current version)
  • 0: Activates recommendation ITU-R P.1510-0 (02/01) (Current version)
itur.models.itu1510.get_version()[source]

Obtain the version of the ITU-R P.1510 recommendation currently being used.

Returns:version – Version currently being used.
Return type:int
itur.models.itu1510.surface_mean_temperature(lat, lon)[source]

Annual mean surface temperature (K) at 2 m above the surface of the Earth.

A method to estimate the annual mean surface temperature (K) at 2 m above the surface of the Earth

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns:

annual_temperature – Annual mean surface temperature (K). Same dimensions as lat and lon.

Return type:

numpy.ndarray

References

[1] Annual mean surface temperature: https://www.itu.int/rec/R-REC-P.1510/en

itur.models.itu1510.surface_month_mean_temperature(lat, lon, m)[source]

Monthly mean surface temperature (K) at 2 m above the surface of the Earth.

A method to estimate the monthly mean surface temperature (K) at 2 m above the surface of the Earth

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • m (integer) – Index of the month (1=Jan, 2=Feb, 3=Mar, 4=Apr, …)
Returns:

monthly_temperature – Monthly mean surface temperature (K). Same dimensions as lat and lon.

Return type:

numpy.ndarray

References

[1] Annual mean surface temperature: https://www.itu.int/rec/R-REC-P.1510/en

Recommendation ITU-R P.1511

This Recommendation provides global topographical data, information on geographic coordinates, and height data for the prediction of propagation effects for Earth-space paths in ITU-R recommendations.

Title PDF Latest approved in
Recommendation ITU-R P.1511 [PDF] 2019-08
Topography for Earth-to-space propagation modelling
Current recommendation version (In force)   Date
Recommendation ITU-R P.1511-2 [PDF] 08/2019
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.1511-2 [PDF] 08/2019
Recommendation ITU-R P.1511-1 [PDF] 07/2015
Recommendation ITU-R P.1511-0 [PDF] 02/2001
Introduction

This model shall be used to obtain the height above mean sea level when no local data are available or when no data with a better spatial resolution is available.

The values of topographic height of the surface of the Earth above mean sea level (km) are an integral part of this Recommendation. The data is provided on a 1/12° grid in both latitude and longitude. For a location different from the grid points, the height above mean sea level at the desired location can be obtained by performing a bi-cubic interpolation on the values at the sixteen closest grid points

Module description
itur.models.itu1511.change_version(new_version)[source]

Change the version of the ITU-R P.1511 recommendation currently being used.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 1: Activates recommendation ITU-R P.1511-1 (07/15) (Current version)
  • 0: Activates recommendation ITU-R P.1511-0 (02/01) (Superseded)
itur.models.itu1511.get_version()[source]

Obtain the version of the ITU-R P.1511 recommendation currently being used.

Returns:version – Version currently being used.
Return type:int
itur.models.itu1511.topographic_altitude(lat, lon)[source]

Topographical height (km) above mean sea level of the surface of the Earth.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
Returns:

altitude – Topographic altitude (km)

Return type:

numpy.ndarray

References

[1] Topography for Earth-to-space propagation modelling: https://www.itu.int/rec/R-REC-P.1511/en

Recommendation ITU-R P.1623

This Recommendation provides prediction methods of fade dynamics on Earth-space paths.

Title PDF Latest approved in
Recommendation ITU-R P.1623 [PDF] 2005-03
Prediction method of fade dynamics on Earth-space paths
Current recommendation version (In force)   Date
Recommendation ITU-R P.1623-1 [PDF] 03/2005
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.1623-1 [PDF] 03/2005
Recommendation ITU-R P.1623-0 [PDF] 04/2003
Introduction

In the design of a variety of telecommunication systems, the dynamic characteristics of fading due to atmospheric propagation are of concern to optimize system capacity and meet quality and reliability criteria. Examples are fixed networks that include a space segment and systems that apply fade mitigation or resource sharing techniques.

Several temporal scales can be defined, and it is useful to have information on fade slope, fade duration and interfade duration statistics for a given attenuation level. Fade duration is defined as the time interval between two crossings above the same attenuation threshold whereas interfade duration is defined as the time interval between two crossings below the same attenuation threshold. Fade slope is defined as the rate of change of attenuation with time.

Of particular interest in the context of availability criteria is the distinction between fades of shorter and longer duration than 10 s. Knowledge of the distribution of fade duration as a function of fade depth is also a prerequisite for the application of risk concepts in the provision of telecommunication services.

In addition, information about the expected fade slope is essential to assess the required minimum tracking rate of a fade mitigation system.

Module description
itur.models.itu1623.Qfunc(z)[source]

Tail distribution function of the standard normal distribution.

Q(z) is the probability that a normal (Gaussian) random variable will a value larger than z standard deviations

The Q-function can be expressed in terms of the error function as

\[Q(z) = \frac{1}{2} \left(1 - erf\left(\frac{z}{\sqrt{2}}\right)\right)\]
Parameters:z (float) – Value to evaluate Q at.
Returns:q – Value of the Q function evaluated at z.
Return type:float
itur.models.itu1623.change_version(new_version)[source]

Change the version of the ITU-R P.1623 recommendation currently being used.

This function changes the model used for the ITU-R P.1623 recommendation to a different version.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 1: Activates recommendation ITU-R P.1623-1 (03/2005) (Current version)
  • 0: Activates recommendation ITU-R P.1623-0 (04/2003) (Superseded)
itur.models.itu1623.get_version()[source]

Obtain the version of the ITU-R P.1623 recommendation currently being used.

Returns:version – Version currently being used.
Return type:int
itur.models.itu1623.fade_duration_probability(D, A, el, f)[source]

Compute the probability of occurrence of fades of duration longer than D.

Compute the probability of occurrence of fades of duration d longer than D (s), given that the attenuation a is greater than A (dB).

This probability can be estimated from the ratio of the number of fades of duration longer than D to the total number of fades observed, given that the threshold A is exceeded.

Parameters:
  • D (number, sequence, or numpy.ndarray) – Event durations, array, (s)
  • A (number) – Attenuation threshold, scalar, (dB)
  • el (number) – Elevation angle towards the satellite, deg (5 - 60)
  • f (number) – Frequency, GHz (between 10 and 50 GHz)
Returns:

p – Probability of occurence of fade events of duration d longer than D given a>A, P(d > D|a > A)

Return type:

number, sequence, or numpy.ndarray

References

[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en

itur.models.itu1623.fade_duration_cummulative_probability(D, A, el, f)[source]

Compute the cumulative probability of exceedance of fades of duration longer than D.

Compute the cummulative exceedance probability F(d > D|a > A), the total fraction (between 0 and 1) of fade time due to fades of duration d longer than D (s), given that the attenuation a is greater than A (dB).

Parameters:
  • D (number, sequence, or numpy.ndarray) – Event durations, array, (s)
  • A (number) – Attenuation threshold, scalar, (dB)
  • el (number) – Elevation angle towards the satellite, deg (5 - 60)
  • f (number) – Frequency, GHz (between 10 and 50 GHz)
Returns:

F – Cumulative probability of exceedance, total fraction of fade time due to fades of d > D

Return type:

number, sequence, or numpy.ndarray

References

[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en

itur.models.itu1623.fade_duration_number_fades(D, A, el, f, T_tot)[source]

Compute the number of fades of duration longer than D.

For a given reference period, the number of fades of duration longer D is estimated by multiplying the probability of occurrence P(d > D|a > A) by the total number of fades exceeding the threshold, Ntot(A).

Parameters:
  • D (number, sequence, or numpy.ndarray) – Event durations, array, (s)
  • A (number) – Attenuation threshold, scalar, (dB)
  • el (number) – Elevation angle towards the satellite, deg (5 - 60)
  • f (number) – Frequency, GHz (between 10 and 50 GHz)
  • T_tot (number) –

    Total fade time from cumulative distribution (P(A)/100)*Reference time period. T_tot should be obtained from local data. If this long-term statistic is not available, an estimate can be calculated from Recommendation ITU-R P.618. In this case the procedure consists in calculating the CDF of total attenuation, deriving the percentage of time the considered attenuation threshold A is exceeded and then the associated total exceedance time T_tot for the reference period considered.

    For a reference period of a year, T_tot = ((100-availability_in_pctg)/100)*365.25*24*3600 [s]

Returns:

N – threshold A

Return type:

Total number of fades of duration d longer than D, for a given

References

[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en

itur.models.itu1623.fade_duration_total_exceedance_time(D, A, el, f, T_tot)[source]

Compute the total exceedance time of fades of duration longer than D.

The total exceedance time due to fade events of duration longer than D is obtained by multiplying the fraction of time F(d > D|a > A) by the total time that the threshold is exceeded, Ttot(A).

Parameters:
  • D (number, sequence, or numpy.ndarray) – Event durations, array, (s)
  • A (number) – Attenuation threshold, scalar, (dB)
  • el (number) – Elevation angle towards the satellite, deg (5 - 60)
  • f (number) – Frequency, GHz (between 10 and 50 GHz)
  • T_tot (number) –

    Total fade time from cumulative distribution (P(A)/100)*Reference time period. T_tot should be obtained from local data. If this long-term statistic is not available, an estimate can be calculated from Recommendation ITU-R P.618. In this case the procedure consists in calculating the CDF of total attenuation, deriving the percentage of time the considered attenuation threshold A is exceeded and then the associated total exceedance time T_tot for the reference period considered.

    For a reference period of a year, T_tot = ((100-availability_in_pctg)/100)*365.25*24*3600 [s]

Returns:

T

Return type:

Total fading time due to fades of d > D for A threshold.

References

[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en

itur.models.itu1623.fade_duration(D, A, el, f, T_tot)[source]

Compute the probability of occurrence of fades of duration longer than D.

Compute the probability of occurrence of fades of duration d longer than D (s), given that the attenuation a is greater than A (dB) and F(d > D|a > A), the cumulative exceedance probability, or, equivalently, the total fraction (between 0 and 1) of fade time due to fades of duration d longer than D (s), given that the attenuation a is greater than A (dB).

The function also returns other parameters associated to the fade duration prediction method. See ITU-R P.1623 Annex 1 Section 2.2

Parameters:
  • D (number, sequence, or numpy.ndarray) – Event durations, array, (s)
  • A (number) – Attenuation threshold, scalar, (dB)
  • el (number) – Elevation angle towards the satellite, deg (5 - 60)
  • f (number) – Frequency, GHz (between 10 and 50 GHz)
  • T_tot (number) –

    Total fade time from cumulative distribution (P(A)/100)*Reference time period. T_tot should be obtained from local data. If this long-term statistic is not available, an estimate can be calculated from Recommendation ITU-R P.618. In this case the procedure consists in calculating the CDF of total attenuation, deriving the percentage of time the considered attenuation threshold A is exceeded and then the associated total exceedance time T_tot for the reference period considered.

    For a reference period of a year, T_tot = ((100-availability_in_pctg)/100)*365.25*24*3600 [s]

Returns:

  • p (probability of occurence of fade events of) – duration d longer than D given a>A, P(d > D|a > A)
  • F (cumulative probability of exceedance, total) – fraction of fade time due to fades of d > D
  • N (total number of fades of duration d longer than D, for a given) – threshold A
  • T (total fading time due to fades of d > D for A threshold)

References

[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en

itur.models.itu1623.fade_slope(z, A, f_B, delta_t)[source]

Compute the probability of exceeding a valueo f fade slope.

Fade slope is defined as the rate of change of attenuation with time information about the expected fade slope is essential to assess the required minimum tracking rate of a fade mitigation system. The model is valid for the following ranges of parameters:

  • frequencies from 10 to 30 GHz
  • elevation angles from 10° to 50°.

See ITU-R P.1623 Annex 1 Section 3.2

Parameters:
  • z (number, sequence, or numpy.ndarray) – array of fade slope values (dB/s)
  • A (number) – attenuation threshold, scalar, dB (range 0 - 20 dB)
  • f_B (number) – 3 dB cut-off frequency of the low pass filter (Hz, range 0.001 - 1) used to remove tropospheric scintillation and rapid variations of rain attenuation from the signal. Experimental results show that a 3 dB cut-off frequency of 0.02 Hz allows scintillation and rapid variations of rain attenuation to be filtered out adequately.
  • delta_t (number) – Time interval length over which fade slope is calculated (s), 2-200 s
Returns:

  • p (conditional probability (probability density function)) – that the fade slope is equal to the fade slope for a given attenuation value, A
  • P (conditional probability (complementary cumulative) – distribution function)that the fade slope is exceeded for a given attenuation value, A
  • P2 (conditional probability that the absolute value of) – the fade slope is exceeded for a given attenuation value, A
  • sigma_z (standard deviation of the conditional fade slope)
  • Remark
  • ——
  • The output is an array of 4 elements.

Example

import itur.models.itu1623 as itu1623

z = np.linspace(-2,2,100)
A = 10
f_B = 0.02
delta_t = 1
p, P, P2, sigma_z = itu1623.fade_slope(z, A, f_B, delta_t)

References

[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en

itur.models.itu1623.fade_depth(N_target, D_target, A, PofA, el, f)[source]

Compute the maximum fade a link must tolerate given a target outage intensity value (number of events) and a target duration of event.

The fade depth is computed by numerical solution of the fade_duration problem.

See ITU-R P.1623 Annex 1 Section 3.2

Parameters:
  • N_target (int) – Target outage intensity (scalar)
  • D_target (int) – Event duration (scalar)
  • A (number, sequence, or numpy.ndarray) – Attenuation distribution (CDF, A) for the link under analysis
  • PofA (number, sequence, or numpy.ndarray) – Probability that A is exceeded (CDF, probability)
  • el (number) – Elevation angle (deg)
  • f (number) – Frequency (GHz)
Returns:

  • a_min (number) – Minimum attenuation the link must tolerate to meet the OI target
  • Remark
  • ——
  • This function uses scipy’s fsolve as optimizer.

Example

import itur.models.itu1623 as itu1623

N_target = 25
D_target = 60
PofA = np.array([50, 30, 20, 10, 5, 3, 2, 1, .5, .3, .2, .1, .05, .03,
                 .02, .01, .005, .003, .002, .001])
A = np.array([0.4, 0.6, 0.8, 1.8, 2.70, 3.5, 4.20, 5.7, 7.4, 9, 10.60,
              14, 18.3, 22.3, 25.8, 32.6, 40.1, 46.1, 50.8, 58.8])
el = 38.5
f = 28
itu1623.fade_depth(N_target, D_target, A, PofA, el, f) # 21.6922280

References

[1] Prediction method of fade dynamics on Earth-space paths: https://www.itu.int/rec/R-REC-P.1623/en

Recommendation ITU-R P.1853

This Recommendation provides methods to synthesize rain attenuation and scintillation for terrestrial and Earth-space paths and total attenuation and tropospheric scintillation for Earth-space paths.

Title PDF Latest approved in
Recommendation ITU-R P.1853 [PDF] 2019-08
Time series synthesis of tropospheric impairments
Current recommendation version (In force)   Date
Recommendation ITU-R P.1853-2 [PDF] 08/2019
Recommendations implemented in ITU-Rpy   Date
Recommendation ITU-R P.1853-1 [PDF] 02/2012
Recommendation ITU-R P.1853-0 [PDF] 10/2009
Recommendations not implemented in ITU-Rpy   Date
Recommendation ITU-R P.1853-2 [PDF] 08/2019
Introduction

The planning and design of terrestrial and Earth-space radiocommunication systems requires the ability to synthesize the time dynamics of the propagation channel. For example, this information may be required to design various fade mitigation techniques such as, inter alia, adaptive coding and modulation, and transmit power control.

The methodology presented in this Recommendation provides a technique to synthesize rain attenuation and scintillation time series for terrestrial and Earth-space paths and total attenuation and tropospheric scintillation for Earth-space paths that approximate the rain attenuation statistics at a particular location.

Module description
itur.models.itu1853.change_version(new_version)[source]

Change the version of the ITU-R P.1853 recommendation currently being used.

Parameters:new_version (int) –

Number of the version to use. Valid values are:

  • 1: Activates recommendation ITU-R P.1853-1 (02/12) (Current version)
  • 0: Activates recommendation ITU-R P.1853-0 (10/09) (Superseded)
itur.models.itu1853.get_version()[source]

Obtain the version of the ITU-R P.1853 recommendation currently being used.

Returns:version – Version currently being used.
Return type:int
itur.models.itu1853.set_seed(seed)[source]

Set the seed used to generate random numbers.

Parameters:seed (int) – Seed used to generate random numbers
itur.models.itu1853.rain_attenuation_synthesis(lat, lon, f, el, hs, Ns, Ts=1, tau=45, n=None)[source]

A method to generate a synthetic time series of rain attenuation values.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • f (number or Quantity) – Frequency (GHz)
  • el (sequence, or number) – Elevation angle (degrees)
  • hs (number, sequence, or numpy.ndarray, optional) – Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
  • Ns (int) – Number of samples
  • Ts (int) – Time step between consecutive samples (seconds)
  • tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
  • n (list, np.array, optional) – Additive White Gaussian Noise used as input for the
Returns:

rain_att – Synthesized rain attenuation time series (dB)

Return type:

numpy.ndarray

References

[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.1853/en

itur.models.itu1853.scintillation_attenuation_synthesis(Ns, f_c=0.1, Ts=1)[source]

A method to generate a synthetic time series of scintillation attenuation values.

Parameters:
  • Ns (int) – Number of samples
  • f_c (float) – Cut-off frequency for the low pass filter
  • Ts (int) – Time step between consecutive samples (seconds)
Returns:

sci_att – Synthesized scintilation attenuation time series (dB)

Return type:

numpy.ndarray

References

[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.1853/en

itur.models.itu1853.integrated_water_vapour_synthesis(lat, lon, Ns, Ts=1, n=None)[source]

The time series synthesis method generates a time series that reproduces the spectral characteristics and the distribution of water vapour content.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • Ns (int) – Number of samples
  • Ts (int) – Time step between consecutive samples (seconds)
  • n (list, np.array, optional) – Additive White Gaussian Noise used as input for the
Returns:

L – Synthesized water vapour content time series (kg/m2)

Return type:

numpy.ndarray

References

[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.1853/en

itur.models.itu1853.cloud_liquid_water_synthesis(lat, lon, Ns, Ts=1, n=None)[source]

The time series synthesis method generates a time series that reproduces the spectral characteristics, rate of change and duration statistics of cloud liquid content events.

Parameters:
  • lat (number, sequence, or numpy.ndarray) – Latitudes of the receiver points
  • lon (number, sequence, or numpy.ndarray) – Longitudes of the receiver points
  • Ns (int) – Number of samples
  • Ts (int) – Time step between consecutive samples (seconds)
  • n (list, np.array, optional) – Additive White Gaussian Noise used as input for the
Returns:

V – Synthesized cloud liquid water time series (mm)

Return type:

numpy.ndarray

References

[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.1853/en

itur.models.itu1853.total_attenuation_synthesis(lat, lon, f, el, p, D, Ns, Ts=1, hs=None, tau=45, eta=0.65, rho=None, H=None, P=None, hL=1000, return_contributions=False)[source]

The time series synthesis method generates a time series that reproduces the spectral characteristics, rate of change and duration statistics of the total atmospheric attenuation events.

The time series is obtained considering the contributions of gaseous, cloud, rain, and scintillation attenuation.

Parameters:
  • lat (number) – Latitudes of the receiver points
  • lon (number) – Longitudes of the receiver points
  • f (number or Quantity) – Frequency (GHz)
  • el (number) – Elevation angle (degrees)
  • p (number) – Percentage of the time the rain attenuation value is exceeded.
  • D (number or Quantity) – Physical diameter of the earth-station antenna (m)
  • Ns (int) – Number of samples
  • Ts (int) – Time step between consecutive samples (seconds)
  • tau (number, optional) – Polarization tilt angle relative to the horizontal (degrees) (tau = 45 deg for circular polarization). Default value is 45
  • hs (number, sequence, or numpy.ndarray, optional) – Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511.
  • eta (number, optional) – Antenna efficiency. Default value 0.5 (conservative estimate)
  • rho (number or Quantity, optional) – Water vapor density (g/m3). If not provided, an estimate is obtained from Recommendation Recommendation ITU-R P.836.
  • H (number, sequence, or numpy.ndarray, optional) – Average surface relative humidity (%) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
  • P (number, sequence, or numpy.ndarray, optional) – Average surface pressure (hPa) at the site. If None, uses the ITU-R P.453 to estimate the wet term of the radio refractivity.
  • hL (number, optional) – Height of the turbulent layer (m). Default value 1000 m
  • return_contributions (bool, optional) – Determines whether individual contributions from gases, rain, clouds and scintillation are returned in addition ot the total attenuation (True), or just the total atmospheric attenuation (False). Default is False
Returns:

  • A (Quantity) – Synthesized total atmospheric attenuation time series (dB)
  • Ag, Ac, Ar, As, A (tuple) – Synthesized Gaseous, Cloud, Rain, Scintillation contributions to total attenuation time series, and synthesized total attenuation time seires (dB).

References

[1] Characteristics of precipitation for propagation modelling https://www.itu.int/rec/R-REC-P.1853/en

It is also advisable that developers use the index, module index, and search page below for quick access to specific functions:

Validation

ITU-Rpy has been validated using the ITU Validation examples (rev 5.1) , which provides test cases for parts of Recommendations ITU-R P.453-14, P.618-13, P.676-12, P.836-6, P.837-7, P.838-3, P.839-4, P.840-8, P.1511-2, P.1623-1.

For each part of the recommendation that has a counterpart function in ITU-Rpy, the results of the executing the ITUR-py function are compared against the values provided in the ITU Validation examples. The absolute and relative errors between these two quantities are computed, and each test case is color-coded (green = pass, errors are negligible, red = fail, errors are above 0.01%).

The links below show the validation results for each of the recommendations:

Validation results for ITU-R P.453-14

This page contains the validation examples for Recommendation ITU-R P.453-14: TBD.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function map_wet_term_radio_refractivity

The table below contains the results of testing function map_wet_term_radio_refractivity. The test cases were extracted from spreadsheet ITURP453-14_Nwet.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.133  #  (°N)
lon = 101.7  # (°E)
p = 50.0  # (%)

# Make call to test-function map_wet_term_radio_refractivity
itur_val = itur.models.itu453.map_wet_term_radio_refractivity(lat=lat, lon=lon, p=p)

# Compute error with respect to value in ITU example file
ITU_example_val = 128.1408003  # nan
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results for models.itu453.map_wet_term_radio_refractivity
ITU-Rpy Function lat (°N) lon (°E) p (%) ITU Validation nan ITU-Rpy Result nan Absolute Error Relative Error
models.itu453.map_wet_term_radio_refractivity 3.133 101.70 50.0 128.140800 128.140800 3.33e-08 0.000
models.itu453.map_wet_term_radio_refractivity 22.900 -43.23 50.0 104.358475 104.358475 3.33e-08 0.000
models.itu453.map_wet_term_radio_refractivity 23.000 30.00 50.0 36.471667 36.471667 3.33e-09 0.000
models.itu453.map_wet_term_radio_refractivity 25.780 -80.22 50.0 113.273867 113.273867 4.26e-14 0.000
models.itu453.map_wet_term_radio_refractivity 28.717 77.30 50.0 75.660135 75.660135 3.33e-09 0.000
models.itu453.map_wet_term_radio_refractivity 33.940 18.43 50.0 80.140160 80.140160 -4.44e-09 -0.000
models.itu453.map_wet_term_radio_refractivity 41.900 12.49 50.0 61.218900 61.218900 -4.44e-09 -0.000
models.itu453.map_wet_term_radio_refractivity 51.500 -0.14 50.0 50.389262 50.389262 -2.22e-09 -0.000


Validation results ITU-R P.618-13

This page contains the validation examples for Recommendation ITU-R P.618-13: Propagation data and prediction methods required for the design of Earth-space telecommunication systems.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function rain_attenuation

The table below contains the results of testing function rain_attenuation. The test cases were extracted from spreadsheet ITURP618-13_A_rain.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 51.5  #  (°N)
lon = -0.14  # (°E)
hs = 0.031382983999999996  #  (km)
el = 31.07699124  # (°)
f = 14.25  # (GHz)
tau = 0.0  # (°)
p = 1.0  # (%)
R001 = 26.480520000000002  # (mm/h)

# Make call to test-function rain_attenuation
itur_val = itur.models.itu618.rain_attenuation(lat=lat, lon=lon, hs=hs, el=el, f=f, tau=tau, p=p, R001=R001)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.495317069  # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu618.rain_attenuation
ITU-Rpy Function lat (°N) lon (°E) hs (km) el (°) f (GHz) tau (°) p (%) R001 (mm/h) ITU Validation (dB) ITU-Rpy Result (dB) Absolute Error Relative Error
models.itu618.rain_attenuation 51.500 -0.14 0.031383 31.076991 14.25 0.0 1.000 26.480520 0.495317 0.495317 2.17e-11 0.000
models.itu618.rain_attenuation 41.900 12.49 0.046123 40.232036 14.25 0.0 1.000 33.936232 0.623263 0.623263 2.06e-10 0.000
models.itu618.rain_attenuation 33.940 18.43 0.000000 46.359693 14.25 0.0 1.000 27.135868 0.421017 0.421017 1.40e-10 0.000
models.itu618.rain_attenuation 51.500 -0.14 0.031383 31.076991 14.25 0.0 0.100 26.480520 2.185847 2.185847 1.28e-10 0.000
models.itu618.rain_attenuation 41.900 12.49 0.046123 40.232036 14.25 0.0 0.100 33.936232 2.696765 2.696765 4.37e-10 0.000
models.itu618.rain_attenuation 33.940 18.43 0.000000 46.359693 14.25 0.0 0.100 27.135868 1.913388 1.913388 5.49e-11 0.000
models.itu618.rain_attenuation 51.500 -0.14 0.031383 31.076991 14.25 0.0 0.010 26.480520 6.798072 6.798072 9.61e-10 0.000
models.itu618.rain_attenuation 41.900 12.49 0.046123 40.232036 14.25 0.0 0.010 33.936232 8.223265 8.223265 7.29e-10 0.000
models.itu618.rain_attenuation 33.940 18.43 0.000000 46.359693 14.25 0.0 0.010 27.135868 5.941806 5.941806 -2.64e-10 -0.000
models.itu618.rain_attenuation 51.500 -0.14 0.031383 31.076991 14.25 0.0 0.001 26.480520 14.899822 14.899822 1.91e-09 0.000
models.itu618.rain_attenuation 41.900 12.49 0.046123 40.232036 14.25 0.0 0.001 33.936232 17.671558 17.671558 -1.92e-09 -0.000
models.itu618.rain_attenuation 33.940 18.43 0.000000 46.359693 14.25 0.0 0.001 27.135868 12.981517 12.981517 2.47e-09 0.000
models.itu618.rain_attenuation 51.500 -0.14 0.031383 31.076991 29.00 0.0 1.000 26.480520 2.207786 2.207786 3.84e-11 0.000
models.itu618.rain_attenuation 41.900 12.49 0.046123 40.232036 29.00 0.0 1.000 33.936232 2.823466 2.823466 2.25e-10 0.000
models.itu618.rain_attenuation 33.940 18.43 0.000000 46.359693 29.00 0.0 1.000 27.135868 1.960636 1.960636 1.28e-11 0.000
models.itu618.rain_attenuation 51.500 -0.14 0.031383 31.076991 29.00 0.0 0.100 26.480520 8.570058 8.570058 5.85e-10 0.000
models.itu618.rain_attenuation 41.900 12.49 0.046123 40.232036 29.00 0.0 0.100 33.936232 10.731008 10.731008 -1.49e-09 -0.000
models.itu618.rain_attenuation 33.940 18.43 0.000000 46.359693 29.00 0.0 0.100 27.135868 7.808323 7.808323 -2.67e-10 -0.000
models.itu618.rain_attenuation 51.500 -0.14 0.031383 31.076991 29.00 0.0 0.010 26.480520 23.444445 23.444445 -1.91e-09 -0.000
models.itu618.rain_attenuation 41.900 12.49 0.046123 40.232036 29.00 0.0 0.010 33.936232 28.742722 28.742722 -1.98e-09 -0.000
models.itu618.rain_attenuation 33.940 18.43 0.000000 46.359693 29.00 0.0 0.010 27.135868 21.248620 21.248620 6.22e-10 0.000
models.itu618.rain_attenuation 51.500 -0.14 0.031383 31.076991 29.00 0.0 0.001 26.480520 45.198656 45.198656 3.56e-09 0.000
models.itu618.rain_attenuation 41.900 12.49 0.046123 40.232036 29.00 0.0 0.001 33.936232 54.255612 54.255612 -3.29e-09 -0.000
models.itu618.rain_attenuation 33.940 18.43 0.000000 46.359693 29.00 0.0 0.001 27.135868 40.681330 40.681330 4.43e-09 0.000
models.itu618.rain_attenuation 22.900 -43.23 0.000000 22.278335 14.25 0.0 1.000 50.639304 1.706901 1.706901 -4.20e-10 -0.000
models.itu618.rain_attenuation 25.780 -80.22 0.008617 52.678985 14.25 0.0 1.000 78.299499 1.437313 1.437313 1.97e-10 0.000
models.itu618.rain_attenuation 22.900 -43.23 0.000000 22.278335 14.25 0.0 0.100 50.639304 8.271647 8.271647 -2.71e-09 -0.000
models.itu618.rain_attenuation 25.780 -80.22 0.008617 52.678985 14.25 0.0 0.100 78.299499 6.297247 6.297247 2.20e-10 0.000
models.itu618.rain_attenuation 22.900 -43.23 0.000000 22.278335 14.25 0.0 0.010 50.639304 18.944104 18.944104 4.59e-10 0.000
models.itu618.rain_attenuation 25.780 -80.22 0.008617 52.678985 14.25 0.0 0.010 78.299499 16.429807 16.429807 1.59e-10 0.000
models.itu618.rain_attenuation 22.900 -43.23 0.000000 22.278335 14.25 0.0 0.001 50.639304 29.911713 29.911713 5.32e-09 0.000
models.itu618.rain_attenuation 25.780 -80.22 0.008617 52.678985 14.25 0.0 0.001 78.299499 29.930948 29.930948 3.99e-09 0.000
models.itu618.rain_attenuation 22.900 -43.23 0.000000 22.278335 29.00 0.0 1.000 50.639304 6.813368 6.813368 -3.45e-10 -0.000
models.itu618.rain_attenuation 25.780 -80.22 0.008617 52.678985 29.00 0.0 1.000 78.299499 6.654856 6.654856 1.76e-10 0.000
models.itu618.rain_attenuation 22.900 -43.23 0.000000 22.278335 29.00 0.0 0.100 50.639304 29.318968 29.318968 -7.76e-09 -0.000
models.itu618.rain_attenuation 25.780 -80.22 0.008617 52.678985 29.00 0.0 0.100 78.299499 25.562955 25.562955 -9.96e-11 -0.000
models.itu618.rain_attenuation 22.900 -43.23 0.000000 22.278335 29.00 0.0 0.010 50.639304 59.625764 59.625764 -3.59e-09 -0.000
models.itu618.rain_attenuation 25.780 -80.22 0.008617 52.678985 29.00 0.0 0.010 78.299499 58.474383 58.474383 -1.82e-09 -0.000
models.itu618.rain_attenuation 22.900 -43.23 0.000000 22.278335 29.00 0.0 0.001 50.639304 83.599639 83.599639 6.90e-09 0.000
models.itu618.rain_attenuation 25.780 -80.22 0.008617 52.678985 29.00 0.0 0.001 78.299499 93.395625 93.395625 -8.98e-10 -0.000
models.itu618.rain_attenuation 28.717 77.30 0.209384 48.241171 14.25 90.0 1.000 63.618888 1.274464 1.274464 -6.19e-11 -0.000
models.itu618.rain_attenuation 3.133 101.70 0.051251 85.804596 14.25 90.0 1.000 99.151172 2.001027 2.001027 3.34e-10 0.000
models.itu618.rain_attenuation 9.050 38.70 2.539862 20.143358 14.25 90.0 1.000 42.910072 1.012354 1.012354 6.18e-10 0.000
models.itu618.rain_attenuation 28.717 77.30 0.209384 48.241171 14.25 90.0 0.100 63.618888 5.486347 5.486347 4.37e-10 0.000
models.itu618.rain_attenuation 3.133 101.70 0.051251 85.804596 14.25 90.0 0.100 99.151172 11.001455 11.001455 3.78e-09 0.000
models.itu618.rain_attenuation 9.050 38.70 2.539862 20.143358 14.25 90.0 0.100 42.910072 5.881071 5.881071 2.82e-09 0.000
models.itu618.rain_attenuation 28.717 77.30 0.209384 48.241171 14.25 90.0 0.010 63.618888 14.872137 14.872137 4.25e-09 0.000
models.itu618.rain_attenuation 3.133 101.70 0.051251 85.804596 14.25 90.0 0.010 99.151172 21.610579 21.610579 -2.07e-09 -0.000
models.itu618.rain_attenuation 9.050 38.70 2.539862 20.143358 14.25 90.0 0.010 42.910072 12.289760 12.289760 4.58e-09 0.000
models.itu618.rain_attenuation 28.717 77.30 0.209384 48.241171 14.25 90.0 0.001 63.618888 28.236031 28.236031 -3.08e-09 -0.000
models.itu618.rain_attenuation 3.133 101.70 0.051251 85.804596 14.25 90.0 0.001 99.151172 28.819504 28.819504 3.40e-09 0.000
models.itu618.rain_attenuation 9.050 38.70 2.539862 20.143358 14.25 90.0 0.001 42.910072 17.441993 17.441993 -2.61e-09 -0.000
models.itu618.rain_attenuation 28.717 77.30 0.209384 48.241171 29.00 90.0 1.000 63.618888 5.887822 5.887822 1.95e-10 0.000
models.itu618.rain_attenuation 3.133 101.70 0.051251 85.804596 29.00 90.0 1.000 99.151172 10.213148 10.213148 -3.36e-09 -0.000
models.itu618.rain_attenuation 9.050 38.70 2.539862 20.143358 29.00 90.0 1.000 42.910072 3.701584 3.701584 1.41e-09 0.000
models.itu618.rain_attenuation 28.717 77.30 0.209384 48.241171 29.00 90.0 0.100 63.618888 22.226229 22.226229 7.10e-10 0.000
models.itu618.rain_attenuation 3.133 101.70 0.051251 85.804596 29.00 90.0 0.100 99.151172 48.819968 48.819968 1.86e-09 0.000
models.itu618.rain_attenuation 9.050 38.70 2.539862 20.143358 29.00 90.0 0.100 42.910072 19.239104 19.239104 7.05e-09 0.000
models.itu618.rain_attenuation 28.717 77.30 0.209384 48.241171 29.00 90.0 0.010 63.618888 52.833721 52.833721 4.50e-09 0.000
models.itu618.rain_attenuation 3.133 101.70 0.051251 85.804596 29.00 90.0 0.010 99.151172 83.378562 83.378562 2.28e-09 0.000
models.itu618.rain_attenuation 9.050 38.70 2.539862 20.143358 29.00 90.0 0.010 42.910072 35.970377 35.970377 6.23e-09 0.000
models.itu618.rain_attenuation 28.717 77.30 0.209384 48.241171 29.00 90.0 0.001 63.618888 87.962337 87.962337 2.93e-09 0.000
models.itu618.rain_attenuation 3.133 101.70 0.051251 85.804596 29.00 90.0 0.001 99.151172 96.675211 96.675211 4.49e-09 0.000
models.itu618.rain_attenuation 9.050 38.70 2.539862 20.143358 29.00 90.0 0.001 42.910072 45.674191 45.674191 8.68e-09 0.000


Function atmospheric_attenuation_slant_path

The table below contains the results of testing function atmospheric_attenuation_slant_path. The test cases were extracted from spreadsheet ITURP618-13_A_total.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 51.5  #  (°N)
lon = -0.14  # (°E)
f = 14.25  # (GHz)
el = 31.07699124  # (°)
p = 1.0  # (%)
D = 1.0  # (m)
eta = 0.65  # h
tau = 0.0  # (°)
hs = 0.031382983999999996  # (km)

# Make call to test-function atmospheric_attenuation_slant_path
itur_val = itur.atmospheric_attenuation_slant_path(lat=lat, lon=lon, f=f, el=el, p=p, D=D, eta=eta, tau=tau, hs=hs)

# Compute error with respect to value in ITU example file
ITU_example_val = 1.212790721  # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results atmospheric_attenuation_slant_path
ITU-Rpy Function lat (°N) lon (°E) f (GHz) el (°) p (%) D (m) eta h tau (°) hs (km) ITU Validation (dB) ITU-Rpy Result (dB) Absolute Error Relative Error
atmospheric_attenuation_slant_path 51.500 -0.14 14.25 31.076991 1.000 1.0 0.65 0.0 0.031383 1.212791 1.212792 -9.85e-07 -0.000
atmospheric_attenuation_slant_path 41.900 12.49 14.25 40.232036 1.000 1.0 0.65 0.0 0.046123 1.104002 1.103999 2.08e-06 0.000
atmospheric_attenuation_slant_path 33.940 18.43 14.25 46.359693 1.000 1.0 0.65 0.0 0.000000 0.827813 0.827802 1.03e-05 0.001
atmospheric_attenuation_slant_path 51.500 -0.14 14.25 31.076991 0.100 1.0 0.65 0.0 0.031383 2.901523 2.901527 -4.07e-06 -0.000
atmospheric_attenuation_slant_path 41.900 12.49 14.25 40.232036 0.100 1.0 0.65 0.0 0.046123 3.171655 3.171647 8.43e-06 0.000
atmospheric_attenuation_slant_path 33.940 18.43 14.25 46.359693 0.100 1.0 0.65 0.0 0.000000 2.310531 2.310486 4.51e-05 0.002
atmospheric_attenuation_slant_path 51.500 -0.14 14.25 31.076991 0.010 1.0 0.65 0.0 0.031383 7.507265 7.507277 -1.16e-05 -0.000
atmospheric_attenuation_slant_path 41.900 12.49 14.25 40.232036 0.010 1.0 0.65 0.0 0.046123 8.693154 8.693131 2.34e-05 0.000
atmospheric_attenuation_slant_path 33.940 18.43 14.25 46.359693 0.010 1.0 0.65 0.0 0.000000 6.330976 6.330848 1.29e-04 0.002
atmospheric_attenuation_slant_path 51.500 -0.14 14.25 31.076991 0.001 1.0 0.65 0.0 0.031383 15.608798 15.608820 -2.28e-05 -0.000
atmospheric_attenuation_slant_path 41.900 12.49 14.25 40.232036 0.001 1.0 0.65 0.0 0.046123 18.141360 18.141315 4.52e-05 0.000
atmospheric_attenuation_slant_path 33.940 18.43 14.25 46.359693 0.001 1.0 0.65 0.0 0.000000 13.370111 13.369858 2.52e-04 0.002
atmospheric_attenuation_slant_path 51.500 -0.14 29.00 31.076991 1.000 1.0 0.65 0.0 0.031383 4.836825 4.836830 -4.03e-06 -0.000
atmospheric_attenuation_slant_path 41.900 12.49 29.00 40.232036 1.000 1.0 0.65 0.0 0.046123 4.570303 4.570294 8.81e-06 0.000
atmospheric_attenuation_slant_path 33.940 18.43 29.00 46.359693 1.000 1.0 0.65 0.0 0.000000 3.379708 3.379662 4.60e-05 0.001
atmospheric_attenuation_slant_path 51.500 -0.14 29.00 31.076991 0.100 1.0 0.65 0.0 0.031383 11.199171 11.199185 -1.43e-05 -0.000
atmospheric_attenuation_slant_path 41.900 12.49 29.00 40.232036 0.100 1.0 0.65 0.0 0.046123 12.475796 12.475765 3.07e-05 0.000
atmospheric_attenuation_slant_path 33.940 18.43 29.00 46.359693 0.100 1.0 0.65 0.0 0.000000 9.223537 9.223368 1.69e-04 0.002
atmospheric_attenuation_slant_path 51.500 -0.14 29.00 31.076991 0.010 1.0 0.65 0.0 0.031383 26.071751 26.071786 -3.56e-05 -0.000
atmospheric_attenuation_slant_path 41.900 12.49 29.00 40.232036 0.010 1.0 0.65 0.0 0.046123 30.486002 30.485927 7.45e-05 0.000
atmospheric_attenuation_slant_path 33.940 18.43 29.00 46.359693 0.010 1.0 0.65 0.0 0.000000 22.661253 22.660836 4.16e-04 0.002
atmospheric_attenuation_slant_path 51.500 -0.14 29.00 31.076991 0.001 1.0 0.65 0.0 0.031383 47.828120 47.828182 -6.15e-05 -0.000
atmospheric_attenuation_slant_path 41.900 12.49 29.00 40.232036 0.001 1.0 0.65 0.0 0.046123 56.000323 56.000197 1.26e-04 0.000
atmospheric_attenuation_slant_path 33.940 18.43 29.00 46.359693 0.001 1.0 0.65 0.0 0.000000 42.095681 42.094967 7.15e-04 0.002
atmospheric_attenuation_slant_path 22.900 -43.23 14.25 22.278335 1.000 1.0 0.65 0.0 0.000000 2.744155 2.744149 5.42e-06 0.000
atmospheric_attenuation_slant_path 25.780 -80.22 14.25 52.678985 1.000 1.0 0.65 0.0 0.008617 2.211657 2.211641 1.64e-05 0.001
atmospheric_attenuation_slant_path 22.900 -43.23 14.25 22.278335 0.100 1.0 0.65 0.0 0.000000 9.281657 9.281632 2.48e-05 0.000
atmospheric_attenuation_slant_path 25.780 -80.22 14.25 52.678985 0.100 1.0 0.65 0.0 0.008617 7.067191 7.067125 6.63e-05 0.001
atmospheric_attenuation_slant_path 22.900 -43.23 14.25 22.278335 0.010 1.0 0.65 0.0 0.000000 19.954158 19.954107 5.16e-05 0.000
atmospheric_attenuation_slant_path 25.780 -80.22 14.25 52.678985 0.010 1.0 0.65 0.0 0.008617 17.198261 17.198104 1.57e-04 0.001
atmospheric_attenuation_slant_path 22.900 -43.23 14.25 22.278335 0.001 1.0 0.65 0.0 0.000000 30.941244 30.941171 7.30e-05 0.000
atmospheric_attenuation_slant_path 25.780 -80.22 14.25 52.678985 0.001 1.0 0.65 0.0 0.008617 30.701438 30.701182 2.56e-04 0.001
atmospheric_attenuation_slant_path 22.900 -43.23 29.00 22.278335 1.000 1.0 0.65 0.0 0.000000 10.598519 10.598499 2.02e-05 0.000
atmospheric_attenuation_slant_path 25.780 -80.22 29.00 52.678985 1.000 1.0 0.65 0.0 0.008617 9.640183 9.640109 7.36e-05 0.001
atmospheric_attenuation_slant_path 22.900 -43.23 29.00 22.278335 0.100 1.0 0.65 0.0 0.000000 33.091860 33.091780 7.97e-05 0.000
atmospheric_attenuation_slant_path 25.780 -80.22 29.00 52.678985 0.100 1.0 0.65 0.0 0.008617 28.546736 28.546478 2.59e-04 0.001
atmospheric_attenuation_slant_path 22.900 -43.23 29.00 22.278335 0.010 1.0 0.65 0.0 0.000000 63.403111 63.402964 1.47e-04 0.000
atmospheric_attenuation_slant_path 25.780 -80.22 29.00 52.678985 0.010 1.0 0.65 0.0 0.008617 61.458236 61.457700 5.36e-04 0.001
atmospheric_attenuation_slant_path 22.900 -43.23 29.00 22.278335 0.001 1.0 0.65 0.0 0.000000 87.397350 87.397165 1.85e-04 0.000
atmospheric_attenuation_slant_path 25.780 -80.22 29.00 52.678985 0.001 1.0 0.65 0.0 0.008617 96.381911 96.381144 7.67e-04 0.001
atmospheric_attenuation_slant_path 28.717 77.30 14.25 48.241171 1.000 1.0 0.65 90.0 0.209384 2.257937 2.257627 3.09e-04 0.014
atmospheric_attenuation_slant_path 3.133 101.70 14.25 85.804596 1.000 1.0 0.65 90.0 0.051251 2.824233 2.824188 4.54e-05 0.002
atmospheric_attenuation_slant_path 9.050 38.70 14.25 20.143358 1.000 1.0 0.65 90.0 2.539862 1.961326 1.961309 1.77e-05 0.001
atmospheric_attenuation_slant_path 28.717 77.30 14.25 48.241171 0.100 1.0 0.65 90.0 0.209384 6.467817 6.466594 1.22e-03 0.019
atmospheric_attenuation_slant_path 3.133 101.70 14.25 85.804596 0.100 1.0 0.65 90.0 0.051251 11.820801 11.820572 2.29e-04 0.002
atmospheric_attenuation_slant_path 9.050 38.70 14.25 20.143358 0.100 1.0 0.65 90.0 2.539862 6.807726 6.807629 9.70e-05 0.001
atmospheric_attenuation_slant_path 28.717 77.30 14.25 48.241171 0.010 1.0 0.65 90.0 0.209384 15.852418 15.849412 3.01e-03 0.019
atmospheric_attenuation_slant_path 3.133 101.70 14.25 85.804596 0.010 1.0 0.65 90.0 0.051251 22.430758 22.430350 4.08e-04 0.002
atmospheric_attenuation_slant_path 9.050 38.70 14.25 20.143358 0.010 1.0 0.65 90.0 2.539862 13.221879 13.221694 1.84e-04 0.001
atmospheric_attenuation_slant_path 28.717 77.30 14.25 48.241171 0.001 1.0 0.65 90.0 0.209384 29.217451 29.212334 5.12e-03 0.018
atmospheric_attenuation_slant_path 3.133 101.70 14.25 85.804596 0.001 1.0 0.65 90.0 0.051251 29.643393 29.642906 4.87e-04 0.002
atmospheric_attenuation_slant_path 9.050 38.70 14.25 20.143358 0.001 1.0 0.65 90.0 2.539862 18.400290 18.400055 2.34e-04 0.001
atmospheric_attenuation_slant_path 28.717 77.30 29.00 48.241171 1.000 1.0 0.65 90.0 0.209384 9.723246 9.721866 1.38e-03 0.014
atmospheric_attenuation_slant_path 3.133 101.70 29.00 85.804596 1.000 1.0 0.65 90.0 0.051251 13.417997 13.417768 2.29e-04 0.002
atmospheric_attenuation_slant_path 9.050 38.70 29.00 20.143358 1.000 1.0 0.65 90.0 2.539862 7.008331 7.008272 5.92e-05 0.001
atmospheric_attenuation_slant_path 28.717 77.30 29.00 48.241171 0.100 1.0 0.65 90.0 0.209384 26.061086 26.056323 4.76e-03 0.018
atmospheric_attenuation_slant_path 3.133 101.70 29.00 85.804596 0.100 1.0 0.65 90.0 0.051251 52.023250 52.022248 1.00e-03 0.002
atmospheric_attenuation_slant_path 9.050 38.70 29.00 20.143358 0.100 1.0 0.65 90.0 2.539862 22.535474 22.535192 2.83e-04 0.001
atmospheric_attenuation_slant_path 28.717 77.30 29.00 48.241171 0.010 1.0 0.65 90.0 0.209384 56.668601 56.658341 1.03e-02 0.018
atmospheric_attenuation_slant_path 3.133 101.70 29.00 85.804596 0.010 1.0 0.65 90.0 0.051251 86.582645 86.581095 1.55e-03 0.002
atmospheric_attenuation_slant_path 9.050 38.70 29.00 20.143358 0.010 1.0 0.65 90.0 2.539862 39.274555 39.274076 4.79e-04 0.001
atmospheric_attenuation_slant_path 28.717 77.30 29.00 48.241171 0.001 1.0 0.65 90.0 0.209384 91.798780 91.783468 1.53e-02 0.017
atmospheric_attenuation_slant_path 3.133 101.70 29.00 85.804596 0.001 1.0 0.65 90.0 0.051251 99.882180 99.880568 1.61e-03 0.002
atmospheric_attenuation_slant_path 9.050 38.70 29.00 20.143358 0.001 1.0 0.65 90.0 2.539862 49.004791 49.004245 5.46e-04 0.001


Function rain_attenuation_probability

The table below contains the results of testing function rain_attenuation_probability. The test cases were extracted from spreadsheet ITURP618-13_A_rain.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 51.5  #  (°N)
lon = -0.14  # (°E)
hs = 0.031382983999999996  #  (km)
el = 31.07699124  # (°)
Ls = 4.690817392  # (km)
P0 = 0.053615095999999994  # (0-1)

# Make call to test-function rain_attenuation_probability
itur_val = itur.models.itu618.rain_attenuation_probability(lat=lat, lon=lon, hs=hs, el=el, Ls=Ls, P0=P0)

# Compute error with respect to value in ITU example file
ITU_example_val = 7.341941568999999  # (%)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu618.rain_attenuation_probability
ITU-Rpy Function lat (°N) lon (°E) hs (km) el (°) Ls (km) P0 (0-1) ITU Validation (%) ITU-Rpy Result (%) Absolute Error Relative Error
models.itu618.rain_attenuation_probability 51.500 -0.14 0.031383 31.076991 4.690817 0.053615 7.341942 7.341942 1.13e-08 0.000
models.itu618.rain_attenuation_probability 41.900 12.49 0.046123 40.232036 4.646914 0.052697 7.093501 7.093501 -3.29e-08 -0.000
models.itu618.rain_attenuation_probability 33.940 18.43 0.000000 46.359693 3.542007 0.012757 1.744680 1.744680 2.20e-08 0.000
models.itu618.rain_attenuation_probability 51.500 -0.14 0.031383 31.076991 4.690817 0.053615 7.341942 7.341942 1.13e-08 0.000
models.itu618.rain_attenuation_probability 41.900 12.49 0.046123 40.232036 4.646914 0.052697 7.093501 7.093501 -3.29e-08 -0.000
models.itu618.rain_attenuation_probability 33.940 18.43 0.000000 46.359693 3.542007 0.012757 1.744680 1.744680 2.20e-08 0.000
models.itu618.rain_attenuation_probability 51.500 -0.14 0.031383 31.076991 4.690817 0.053615 7.341942 7.341942 1.13e-08 0.000
models.itu618.rain_attenuation_probability 41.900 12.49 0.046123 40.232036 4.646914 0.052697 7.093501 7.093501 -3.29e-08 -0.000
models.itu618.rain_attenuation_probability 33.940 18.43 0.000000 46.359693 3.542007 0.012757 1.744680 1.744680 2.20e-08 0.000
models.itu618.rain_attenuation_probability 51.500 -0.14 0.031383 31.076991 4.690817 0.053615 7.341942 7.341942 1.13e-08 0.000
models.itu618.rain_attenuation_probability 41.900 12.49 0.046123 40.232036 4.646914 0.052697 7.093501 7.093501 -3.29e-08 -0.000
models.itu618.rain_attenuation_probability 33.940 18.43 0.000000 46.359693 3.542007 0.012757 1.744680 1.744680 2.20e-08 0.000
models.itu618.rain_attenuation_probability 51.500 -0.14 0.031383 31.076991 4.690817 0.053615 7.341942 7.341942 1.13e-08 0.000
models.itu618.rain_attenuation_probability 41.900 12.49 0.046123 40.232036 4.646914 0.052697 7.093501 7.093501 -3.29e-08 -0.000
models.itu618.rain_attenuation_probability 33.940 18.43 0.000000 46.359693 3.542007 0.012757 1.744680 1.744680 2.20e-08 0.000
models.itu618.rain_attenuation_probability 51.500 -0.14 0.031383 31.076991 4.690817 0.053615 7.341942 7.341942 1.13e-08 0.000
models.itu618.rain_attenuation_probability 41.900 12.49 0.046123 40.232036 4.646914 0.052697 7.093501 7.093501 -3.29e-08 -0.000
models.itu618.rain_attenuation_probability 33.940 18.43 0.000000 46.359693 3.542007 0.012757 1.744680 1.744680 2.20e-08 0.000
models.itu618.rain_attenuation_probability 51.500 -0.14 0.031383 31.076991 4.690817 0.053615 7.341942 7.341942 1.13e-08 0.000
models.itu618.rain_attenuation_probability 41.900 12.49 0.046123 40.232036 4.646914 0.052697 7.093501 7.093501 -3.29e-08 -0.000
models.itu618.rain_attenuation_probability 33.940 18.43 0.000000 46.359693 3.542007 0.012757 1.744680 1.744680 2.20e-08 0.000
models.itu618.rain_attenuation_probability 51.500 -0.14 0.031383 31.076991 4.690817 0.053615 7.341942 7.341942 1.13e-08 0.000
models.itu618.rain_attenuation_probability 41.900 12.49 0.046123 40.232036 4.646914 0.052697 7.093501 7.093501 -3.29e-08 -0.000
models.itu618.rain_attenuation_probability 33.940 18.43 0.000000 46.359693 3.542007 0.012757 1.744680 1.744680 2.20e-08 0.000
models.itu618.rain_attenuation_probability 22.900 -43.23 0.000000 22.278335 10.969955 0.014177 2.582901 2.582901 4.63e-08 0.000
models.itu618.rain_attenuation_probability 25.780 -80.22 0.008617 52.678985 5.735099 0.029079 4.038043 4.038043 5.94e-08 0.000
models.itu618.rain_attenuation_probability 22.900 -43.23 0.000000 22.278335 10.969955 0.014177 2.582901 2.582901 4.63e-08 0.000
models.itu618.rain_attenuation_probability 25.780 -80.22 0.008617 52.678985 5.735099 0.029079 4.038043 4.038043 5.94e-08 0.000
models.itu618.rain_attenuation_probability 22.900 -43.23 0.000000 22.278335 10.969955 0.014177 2.582901 2.582901 4.63e-08 0.000
models.itu618.rain_attenuation_probability 25.780 -80.22 0.008617 52.678985 5.735099 0.029079 4.038043 4.038043 5.94e-08 0.000
models.itu618.rain_attenuation_probability 22.900 -43.23 0.000000 22.278335 10.969955 0.014177 2.582901 2.582901 4.63e-08 0.000
models.itu618.rain_attenuation_probability 25.780 -80.22 0.008617 52.678985 5.735099 0.029079 4.038043 4.038043 5.94e-08 0.000
models.itu618.rain_attenuation_probability 22.900 -43.23 0.000000 22.278335 10.969955 0.014177 2.582901 2.582901 4.63e-08 0.000
models.itu618.rain_attenuation_probability 25.780 -80.22 0.008617 52.678985 5.735099 0.029079 4.038043 4.038043 5.94e-08 0.000
models.itu618.rain_attenuation_probability 22.900 -43.23 0.000000 22.278335 10.969955 0.014177 2.582901 2.582901 4.63e-08 0.000
models.itu618.rain_attenuation_probability 25.780 -80.22 0.008617 52.678985 5.735099 0.029079 4.038043 4.038043 5.94e-08 0.000
models.itu618.rain_attenuation_probability 22.900 -43.23 0.000000 22.278335 10.969955 0.014177 2.582901 2.582901 4.63e-08 0.000
models.itu618.rain_attenuation_probability 25.780 -80.22 0.008617 52.678985 5.735099 0.029079 4.038043 4.038043 5.94e-08 0.000
models.itu618.rain_attenuation_probability 22.900 -43.23 0.000000 22.278335 10.969955 0.014177 2.582901 2.582901 4.63e-08 0.000
models.itu618.rain_attenuation_probability 25.780 -80.22 0.008617 52.678985 5.735099 0.029079 4.038043 4.038043 5.94e-08 0.000
models.itu618.rain_attenuation_probability 28.717 77.30 0.209384 48.241171 6.768266 0.010709 1.644749 1.644749 4.24e-08 0.000
models.itu618.rain_attenuation_probability 3.133 101.70 0.051251 85.804596 4.919907 0.045365 5.010168 5.010183 -1.46e-05 -0.000
models.itu618.rain_attenuation_probability 9.050 38.70 2.539862 20.143358 6.516372 0.047125 6.984766 6.984766 -5.45e-08 -0.000
models.itu618.rain_attenuation_probability 28.717 77.30 0.209384 48.241171 6.768266 0.010709 1.644749 1.644749 4.24e-08 0.000
models.itu618.rain_attenuation_probability 3.133 101.70 0.051251 85.804596 4.919907 0.045365 5.010168 5.010183 -1.46e-05 -0.000
models.itu618.rain_attenuation_probability 9.050 38.70 2.539862 20.143358 6.516372 0.047125 6.984766 6.984766 -5.45e-08 -0.000
models.itu618.rain_attenuation_probability 28.717 77.30 0.209384 48.241171 6.768266 0.010709 1.644749 1.644749 4.24e-08 0.000
models.itu618.rain_attenuation_probability 3.133 101.70 0.051251 85.804596 4.919907 0.045365 5.010168 5.010183 -1.46e-05 -0.000
models.itu618.rain_attenuation_probability 9.050 38.70 2.539862 20.143358 6.516372 0.047125 6.984766 6.984766 -5.45e-08 -0.000
models.itu618.rain_attenuation_probability 28.717 77.30 0.209384 48.241171 6.768266 0.010709 1.644749 1.644749 4.24e-08 0.000
models.itu618.rain_attenuation_probability 3.133 101.70 0.051251 85.804596 4.919907 0.045365 5.010168 5.010183 -1.46e-05 -0.000
models.itu618.rain_attenuation_probability 9.050 38.70 2.539862 20.143358 6.516372 0.047125 6.984766 6.984766 -5.45e-08 -0.000
models.itu618.rain_attenuation_probability 28.717 77.30 0.209384 48.241171 6.768266 0.010709 1.644749 1.644749 4.24e-08 0.000
models.itu618.rain_attenuation_probability 3.133 101.70 0.051251 85.804596 4.919907 0.045365 5.010168 5.010183 -1.46e-05 -0.000
models.itu618.rain_attenuation_probability 9.050 38.70 2.539862 20.143358 6.516372 0.047125 6.984766 6.984766 -5.45e-08 -0.000
models.itu618.rain_attenuation_probability 28.717 77.30 0.209384 48.241171 6.768266 0.010709 1.644749 1.644749 4.24e-08 0.000
models.itu618.rain_attenuation_probability 3.133 101.70 0.051251 85.804596 4.919907 0.045365 5.010168 5.010183 -1.46e-05 -0.000
models.itu618.rain_attenuation_probability 9.050 38.70 2.539862 20.143358 6.516372 0.047125 6.984766 6.984766 -5.45e-08 -0.000
models.itu618.rain_attenuation_probability 28.717 77.30 0.209384 48.241171 6.768266 0.010709 1.644749 1.644749 4.24e-08 0.000
models.itu618.rain_attenuation_probability 3.133 101.70 0.051251 85.804596 4.919907 0.045365 5.010168 5.010183 -1.46e-05 -0.000
models.itu618.rain_attenuation_probability 9.050 38.70 2.539862 20.143358 6.516372 0.047125 6.984766 6.984766 -5.45e-08 -0.000
models.itu618.rain_attenuation_probability 28.717 77.30 0.209384 48.241171 6.768266 0.010709 1.644749 1.644749 4.24e-08 0.000
models.itu618.rain_attenuation_probability 3.133 101.70 0.051251 85.804596 4.919907 0.045365 5.010168 5.010183 -1.46e-05 -0.000
models.itu618.rain_attenuation_probability 9.050 38.70 2.539862 20.143358 6.516372 0.047125 6.984766 6.984766 -5.45e-08 -0.000


Function rain_cross_polarization_discrimination

The table below contains the results of testing function rain_cross_polarization_discrimination. The test cases were extracted from spreadsheet ITURP618-13_A_xpd.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
f = 14.25  # (GHz)
el = 31.07699124  # (°)
p = 1.0  # (%)
tau = 0.0  # (°)
Ap = 0.49531707  # (dB)

# Make call to test-function rain_cross_polarization_discrimination
itur_val = itur.models.itu618.rain_cross_polarization_discrimination(f=f, el=el, p=p, tau=tau, Ap=Ap)

# Compute error with respect to value in ITU example file
ITU_example_val = 49.47769944  # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu618.rain_cross_polarization_discrimination
ITU-Rpy Function f (GHz) el (°) p (%) tau (°) Ap (dB) ITU Validation (dB) ITU-Rpy Result (dB) Absolute Error Relative Error
models.itu618.rain_cross_polarization_discrimination 14.25 31.076991 1.000 0.0 0.495317 49.477699 49.477699 -5.20e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 40.232036 1.000 0.0 0.623263 49.377149 49.377149 2.78e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 46.359693 1.000 0.0 0.421017 53.938571 53.938571 -3.09e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 31.076991 0.100 0.0 2.185847 40.203026 40.203026 8.35e-10 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 40.232036 0.100 0.0 2.696765 40.260014 40.260014 -5.62e-10 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 46.359693 0.100 0.0 1.913388 44.682657 44.682657 -2.50e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 31.076991 0.010 0.0 6.798072 32.887586 32.887586 3.19e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 40.232036 0.010 0.0 8.223265 33.120273 33.120273 2.67e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 46.359693 0.010 0.0 5.941806 37.629187 37.629187 -3.61e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 31.076991 0.001 0.0 14.899822 28.054505 28.054505 -4.09e-10 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 40.232036 0.001 0.0 17.671558 28.481053 28.481053 1.58e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 46.359693 0.001 0.0 12.981517 33.075103 33.075103 1.53e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 31.076991 1.000 0.0 2.207786 44.190517 44.190517 -2.90e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 40.232036 1.000 0.0 2.823466 43.836439 43.836439 -3.21e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 46.359693 1.000 0.0 1.960636 48.369649 48.369649 8.79e-10 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 31.076991 0.100 0.0 8.570058 34.928405 34.928405 -2.71e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 40.232036 0.100 0.0 10.731008 34.739991 34.739991 2.65e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 46.359693 0.100 0.0 7.808323 39.126903 39.126903 5.30e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 31.076991 0.010 0.0 23.444445 27.862900 27.862900 -5.74e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 40.232036 0.010 0.0 28.742722 27.860873 27.860873 -5.37e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 46.359693 0.010 0.0 21.248620 32.343669 32.343669 2.66e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 31.076991 0.001 0.0 45.198656 23.548935 23.548935 2.97e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 40.232036 0.001 0.0 54.255612 23.754016 23.754016 2.84e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 46.359693 0.001 0.0 40.681330 28.333811 28.333811 -1.58e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 22.278335 1.000 0.0 1.706901 38.650730 38.650730 2.63e-10 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 52.678985 1.000 0.0 1.437313 46.239921 46.239921 -4.91e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 22.278335 0.100 0.0 8.271647 27.963454 27.963454 4.38e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 52.678985 0.100 0.0 6.297247 36.834658 36.834658 3.48e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 22.278335 0.010 0.0 18.944104 22.644928 22.644928 -3.59e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 52.678985 0.010 0.0 16.429807 30.868800 30.868800 -2.72e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 22.278335 0.001 0.0 29.911713 20.292923 20.292923 4.44e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 52.678985 0.001 0.0 29.930948 27.632370 27.632370 -3.24e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 22.278335 1.000 0.0 6.813368 33.646885 33.646885 -4.56e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 52.678985 1.000 0.0 6.654856 40.086834 40.086834 3.63e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 22.278335 0.100 0.0 29.318968 22.854139 22.854139 4.86e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 52.678985 0.100 0.0 25.562955 30.675965 30.675965 3.41e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 22.278335 0.010 0.0 59.625764 17.882554 17.882554 -1.53e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 52.678985 0.010 0.0 58.474383 25.042467 25.042467 -2.07e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 22.278335 0.001 0.0 83.599639 16.169229 16.169229 -7.31e-10 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 52.678985 0.001 0.0 93.395625 22.427035 22.427035 4.53e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 48.241171 1.000 90.0 1.274464 45.794052 45.794052 -2.26e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 85.804596 1.000 90.0 2.001027 74.875777 74.875777 -7.07e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 20.143358 1.000 90.0 1.012354 42.526404 42.526404 1.79e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 48.241171 0.100 90.0 5.486347 36.508437 36.508437 4.77e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 85.804596 0.100 90.0 11.001455 65.273303 65.273304 -1.24e-08 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 20.143358 0.100 90.0 5.881071 30.564398 30.564398 3.68e-09 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 48.241171 0.010 90.0 14.872137 30.189886 30.189886 3.08e-10 0.000
models.itu618.rain_cross_polarization_discrimination 14.25 85.804596 0.010 90.0 21.610579 63.370502 63.370502 -1.42e-08 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 20.143358 0.010 90.0 12.289760 26.192025 26.192025 -1.47e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 48.241171 0.001 90.0 28.236031 26.537261 26.537261 -2.07e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 85.804596 0.001 90.0 28.819504 64.717261 64.717261 -8.39e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 14.25 20.143358 0.001 90.0 17.441993 25.008801 25.008801 -2.79e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 48.241171 1.000 90.0 5.887822 39.721343 39.721343 4.54e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 85.804596 1.000 90.0 10.213148 67.739322 67.739322 -4.96e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 20.143358 1.000 90.0 3.701584 38.523477 38.523477 3.83e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 48.241171 0.100 90.0 22.226229 30.442770 30.442770 -3.46e-10 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 85.804596 0.100 90.0 48.819968 58.023471 58.023471 -6.32e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 20.143358 0.100 90.0 19.239104 26.349498 26.349498 4.11e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 48.241171 0.010 90.0 52.833721 24.437965 24.437965 -1.17e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 85.804596 0.010 90.0 83.378562 56.633773 56.633773 -1.08e-08 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 20.143358 0.010 90.0 35.970377 22.356294 22.356294 -2.06e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 48.241171 0.001 90.0 87.962337 21.383360 21.383360 5.13e-09 0.000
models.itu618.rain_cross_polarization_discrimination 29.00 85.804596 0.001 90.0 96.675211 58.824705 58.824705 -6.98e-09 -0.000
models.itu618.rain_cross_polarization_discrimination 29.00 20.143358 0.001 90.0 45.674191 21.851236 21.851236 3.93e-09 0.000


Function scintillation_attenuation

The table below contains the results of testing function scintillation_attenuation. The test cases were extracted from spreadsheet ITURP618-13_A_sci.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 51.5  #  (°N)
lon = -0.14  # (°E)
f = 14.25  # (GHz)
el = 31.07699124  # (°)
p = 1.0  # (%)
D = 1.0  # (m)
eta = 0.65  # (0-1)

# Make call to test-function scintillation_attenuation
itur_val = itur.models.itu618.scintillation_attenuation(lat=lat, lon=lon, f=f, el=el, p=p, D=D, eta=eta)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.261931889  # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu618.scintillation_attenuation
ITU-Rpy Function lat (°N) lon (°E) f (GHz) el (°) p (%) D (m) eta (0-1) ITU Validation (dB) ITU-Rpy Result (dB) Absolute Error Relative Error
models.itu618.scintillation_attenuation 51.500 -0.14 14.25 31.076991 1.000 1.0 0.65 0.261932 0.261932 6.92e-11 0.000
models.itu618.scintillation_attenuation 41.900 12.49 14.25 40.232036 1.000 1.0 0.65 0.224052 0.224052 2.16e-10 0.000
models.itu618.scintillation_attenuation 33.940 18.43 14.25 46.359693 1.000 1.0 0.65 0.232799 0.232799 2.71e-10 0.000
models.itu618.scintillation_attenuation 51.500 -0.14 14.25 31.076991 0.100 1.0 0.65 0.422845 0.422845 -3.64e-10 -0.000
models.itu618.scintillation_attenuation 41.900 12.49 14.25 40.232036 0.100 1.0 0.65 0.361695 0.361695 -4.47e-10 -0.000
models.itu618.scintillation_attenuation 33.940 18.43 14.25 46.359693 0.100 1.0 0.65 0.375816 0.375816 -2.50e-10 -0.000
models.itu618.scintillation_attenuation 51.500 -0.14 14.25 31.076991 0.010 1.0 0.65 0.628287 0.628287 8.48e-11 0.000
models.itu618.scintillation_attenuation 41.900 12.49 14.25 40.232036 0.010 1.0 0.65 0.537427 0.537427 -2.22e-10 -0.000
models.itu618.scintillation_attenuation 33.940 18.43 14.25 46.359693 0.010 1.0 0.65 0.558408 0.558408 -1.24e-10 -0.000
models.itu618.scintillation_attenuation 51.500 -0.14 14.25 31.076991 0.001 1.0 0.65 0.910213 0.910213 -3.44e-11 -0.000
models.itu618.scintillation_attenuation 41.900 12.49 14.25 40.232036 0.001 1.0 0.65 0.778581 0.778581 1.25e-10 0.000
models.itu618.scintillation_attenuation 33.940 18.43 14.25 46.359693 0.001 1.0 0.65 0.808978 0.808978 4.40e-10 0.000
models.itu618.scintillation_attenuation 51.500 -0.14 20.00 31.076991 1.000 1.0 0.65 0.316526 0.316526 3.95e-10 0.000
models.itu618.scintillation_attenuation 41.900 12.49 20.00 40.232036 1.000 1.0 0.65 0.270358 0.270358 -3.40e-10 -0.000
models.itu618.scintillation_attenuation 33.940 18.43 20.00 46.359693 1.000 1.0 0.65 0.280680 0.280680 2.25e-10 0.000
models.itu618.scintillation_attenuation 51.500 -0.14 20.00 31.076991 0.100 1.0 0.65 0.510979 0.510979 3.27e-10 0.000
models.itu618.scintillation_attenuation 41.900 12.49 20.00 40.232036 0.100 1.0 0.65 0.436447 0.436447 -2.18e-10 -0.000
models.itu618.scintillation_attenuation 33.940 18.43 20.00 46.359693 0.100 1.0 0.65 0.453111 0.453111 2.81e-10 0.000
models.itu618.scintillation_attenuation 51.500 -0.14 20.00 31.076991 0.010 1.0 0.65 0.759241 0.759241 -1.35e-10 -0.000
models.itu618.scintillation_attenuation 41.900 12.49 20.00 40.232036 0.010 1.0 0.65 0.648498 0.648498 -1.03e-10 -0.000
models.itu618.scintillation_attenuation 33.940 18.43 20.00 46.359693 0.010 1.0 0.65 0.673258 0.673258 -3.64e-10 -0.000
models.itu618.scintillation_attenuation 51.500 -0.14 20.00 31.076991 0.001 1.0 0.65 1.099929 1.099929 -1.76e-10 -0.000
models.itu618.scintillation_attenuation 41.900 12.49 20.00 40.232036 0.001 1.0 0.65 0.939492 0.939492 -3.07e-10 -0.000
models.itu618.scintillation_attenuation 33.940 18.43 20.00 46.359693 0.001 1.0 0.65 0.975363 0.975363 -1.68e-10 -0.000
models.itu618.scintillation_attenuation 22.900 -43.23 14.25 22.278335 1.000 1.0 0.65 0.620097 0.620097 -2.05e-10 -0.000
models.itu618.scintillation_attenuation 25.780 -80.22 14.25 52.678985 1.000 1.0 0.65 0.266475 0.266475 3.59e-10 0.000
models.itu618.scintillation_attenuation 22.900 -43.23 14.25 22.278335 0.100 1.0 0.65 1.001044 1.001044 -1.80e-10 -0.000
models.itu618.scintillation_attenuation 25.780 -80.22 14.25 52.678985 0.100 1.0 0.65 0.430179 0.430179 1.25e-10 0.000
models.itu618.scintillation_attenuation 22.900 -43.23 14.25 22.278335 0.010 1.0 0.65 1.487407 1.487407 -3.10e-10 -0.000
models.itu618.scintillation_attenuation 25.780 -80.22 14.25 52.678985 0.010 1.0 0.65 0.639185 0.639185 1.73e-10 0.000
models.itu618.scintillation_attenuation 22.900 -43.23 14.25 22.278335 0.001 1.0 0.65 2.154839 2.154839 -8.12e-10 -0.000
models.itu618.scintillation_attenuation 25.780 -80.22 14.25 52.678985 0.001 1.0 0.65 0.926000 0.926000 -4.03e-10 -0.000
models.itu618.scintillation_attenuation 22.900 -43.23 20.00 22.278335 1.000 1.0 0.65 0.750597 0.750597 -2.69e-10 -0.000
models.itu618.scintillation_attenuation 25.780 -80.22 20.00 52.678985 1.000 1.0 0.65 0.321045 0.321045 -2.79e-11 -0.000
models.itu618.scintillation_attenuation 22.900 -43.23 20.00 22.278335 0.100 1.0 0.65 1.211713 1.211713 -9.65e-11 -0.000
models.itu618.scintillation_attenuation 25.780 -80.22 20.00 52.678985 0.100 1.0 0.65 0.518273 0.518273 3.66e-11 0.000
models.itu618.scintillation_attenuation 22.900 -43.23 20.00 22.278335 0.010 1.0 0.65 1.800432 1.800432 -5.00e-10 -0.000
models.itu618.scintillation_attenuation 25.780 -80.22 20.00 52.678985 0.010 1.0 0.65 0.770079 0.770079 -3.54e-10 -0.000
models.itu618.scintillation_attenuation 22.900 -43.23 20.00 22.278335 0.001 1.0 0.65 2.608324 2.608324 -2.10e-10 -0.000
models.itu618.scintillation_attenuation 25.780 -80.22 20.00 52.678985 0.001 1.0 0.65 1.115631 1.115631 2.81e-11 0.000
models.itu618.scintillation_attenuation 28.717 77.30 14.25 48.241171 1.000 1.0 0.65 0.215641 0.215641 -4.71e-10 -0.000
models.itu618.scintillation_attenuation 3.133 101.70 14.25 85.804596 1.000 1.0 0.65 0.221671 0.221671 -2.26e-10 -0.000
models.itu618.scintillation_attenuation 9.050 38.70 14.25 20.143358 1.000 1.0 0.65 0.485340 0.485340 -2.90e-10 -0.000
models.itu618.scintillation_attenuation 28.717 77.30 14.25 48.241171 0.100 1.0 0.65 0.348117 0.348117 1.80e-10 0.000
models.itu618.scintillation_attenuation 3.133 101.70 14.25 85.804596 0.100 1.0 0.65 0.357851 0.357851 2.18e-10 0.000
models.itu618.scintillation_attenuation 9.050 38.70 14.25 20.143358 0.100 1.0 0.65 0.783500 0.783500 -4.79e-11 -0.000
models.itu618.scintillation_attenuation 28.717 77.30 14.25 48.241171 0.010 1.0 0.65 0.517252 0.517252 -4.49e-10 -0.000
models.itu618.scintillation_attenuation 3.133 101.70 14.25 85.804596 0.010 1.0 0.65 0.531716 0.531716 1.72e-10 0.000
models.itu618.scintillation_attenuation 9.050 38.70 14.25 20.143358 0.010 1.0 0.65 1.164169 1.164169 3.55e-10 0.000
models.itu618.scintillation_attenuation 28.717 77.30 14.25 48.241171 0.001 1.0 0.65 0.749353 0.749353 -1.35e-10 -0.000
models.itu618.scintillation_attenuation 3.133 101.70 14.25 85.804596 0.001 1.0 0.65 0.770308 0.770308 -1.59e-10 -0.000
models.itu618.scintillation_attenuation 9.050 38.70 14.25 20.143358 0.001 1.0 0.65 1.686556 1.686556 6.69e-10 0.000
models.itu618.scintillation_attenuation 28.717 77.30 20.00 48.241171 1.000 1.0 0.65 0.259933 0.259933 -3.98e-10 -0.000
models.itu618.scintillation_attenuation 3.133 101.70 20.00 85.804596 1.000 1.0 0.65 0.266539 0.266539 -2.69e-10 -0.000
models.itu618.scintillation_attenuation 9.050 38.70 20.00 20.143358 1.000 1.0 0.65 0.587745 0.587745 2.58e-11 0.000
models.itu618.scintillation_attenuation 28.717 77.30 20.00 48.241171 0.100 1.0 0.65 0.419618 0.419618 -4.68e-10 -0.000
models.itu618.scintillation_attenuation 3.133 101.70 20.00 85.804596 0.100 1.0 0.65 0.430283 0.430283 1.27e-10 0.000
models.itu618.scintillation_attenuation 9.050 38.70 20.00 20.143358 0.100 1.0 0.65 0.948816 0.948816 5.16e-10 0.000
models.itu618.scintillation_attenuation 28.717 77.30 20.00 48.241171 0.010 1.0 0.65 0.623492 0.623492 -4.51e-11 -0.000
models.itu618.scintillation_attenuation 3.133 101.70 20.00 85.804596 0.010 1.0 0.65 0.639339 0.639339 2.46e-10 0.000
models.itu618.scintillation_attenuation 9.050 38.70 20.00 20.143358 0.010 1.0 0.65 1.409803 1.409803 1.90e-10 0.000
models.itu618.scintillation_attenuation 28.717 77.30 20.00 48.241171 0.001 1.0 0.65 0.903266 0.903266 -8.27e-11 -0.000
models.itu618.scintillation_attenuation 3.133 101.70 20.00 85.804596 0.001 1.0 0.65 0.926223 0.926223 -4.60e-10 -0.000
models.itu618.scintillation_attenuation 9.050 38.70 20.00 20.143358 0.001 1.0 0.65 2.042413 2.042413 2.39e-10 0.000


Validation results ITU-R P.676-12

This page contains the validation examples for Recommendation ITU-R P.676-12: Attenuation by atmospheric gases and related effects.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function gaseous_attenuation_slant_path

The table below contains the results of testing function gaseous_attenuation_slant_path. The test cases were extracted from spreadsheet ITURP676-12_A_gas.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
f = 14.25  # (GHz)
el = 31.07699124  # (°)
rho = 13.79653679  # (g/m3)
P = 1009.485612  # (hPA)
T = 283.6108756  #  (C)
h = 0.031382983999999996  # (km)
V_t = 33.72946527  #  (kg/m2)

# Make call to test-function gaseous_attenuation_slant_path
itur_val = itur.models.itu676.gaseous_attenuation_slant_path(f=f, el=el, rho=rho, P=P, T=T, h=h, V_t=V_t)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.226874038  # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu676.gaseous_attenuation_slant_path
ITU-Rpy Function f (GHz) el (°) rho (g/m3) P (hPA) T (C) h (km) V_t (kg/m2) ITU Validation (dB) ITU-Rpy Result (dB) Absolute Error Relative Error
models.itu676.gaseous_attenuation_slant_path 14.25 31.076991 13.796537 1009.485612 283.610876 0.031383 33.729465 0.226874 0.226874 3.20e-10 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 40.232036 18.262420 1007.721474 288.089737 0.046123 36.048109 0.189481 0.189481 -1.29e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 46.359693 22.730002 1013.250000 293.369680 0.000000 37.955600 0.176011 0.176011 -2.98e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 31.076991 14.412531 1009.485612 283.610876 0.031383 35.725554 0.236085 0.236085 3.32e-10 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 40.232036 18.749209 1007.721474 288.089737 0.046123 37.513014 0.194969 0.194969 -2.48e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 46.359693 23.199501 1013.250000 293.369680 0.000000 40.511906 0.184676 0.184676 -3.89e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 31.076991 14.783593 1009.485612 283.610876 0.031383 37.295953 0.243411 0.243411 7.32e-11 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 40.232036 19.092542 1007.721474 288.089737 0.046123 38.329647 0.198062 0.198062 6.92e-11 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 46.359693 23.514645 1013.250000 293.369680 0.000000 42.210224 0.190521 0.190521 -3.61e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 31.076991 15.041048 1009.485612 283.610876 0.031383 38.244078 0.247880 0.247880 2.88e-10 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 40.232036 19.346819 1007.721474 288.089737 0.046123 39.051281 0.200805 0.200805 5.58e-11 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 46.359693 23.759345 1013.250000 293.369680 0.000000 43.410461 0.194697 0.194697 -2.08e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 31.076991 13.796537 1009.485612 283.610876 0.031383 33.729465 0.837660 0.837660 -1.39e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 40.232036 18.262420 1007.721474 288.089737 0.046123 36.048109 0.706966 0.706966 3.09e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 46.359693 22.730002 1013.250000 293.369680 0.000000 37.955600 0.665978 0.665978 -5.62e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 31.076991 14.412531 1009.485612 283.610876 0.031383 35.725554 0.880473 0.880473 6.19e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 40.232036 18.749209 1007.721474 288.089737 0.046123 37.513014 0.732381 0.732381 2.27e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 46.359693 23.199501 1013.250000 293.369680 0.000000 40.511906 0.706485 0.706485 -1.84e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 31.076991 14.783593 1009.485612 283.610876 0.031383 37.295953 0.914534 0.914534 5.43e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 40.232036 19.092542 1007.721474 288.089737 0.046123 38.329647 0.746677 0.746677 4.67e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 46.359693 23.514645 1013.250000 293.369680 0.000000 42.210224 0.733784 0.733784 1.27e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 31.076991 15.041048 1009.485612 283.610876 0.031383 38.244078 0.935286 0.935286 -1.04e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 40.232036 19.346819 1007.721474 288.089737 0.046123 39.051281 0.759364 0.759364 5.10e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 46.359693 23.759345 1013.250000 293.369680 0.000000 43.410461 0.753268 0.753268 2.05e-10 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 22.278335 20.739431 1013.250000 297.453541 0.000000 49.513184 0.411484 0.411484 -4.83e-11 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 52.678985 22.466488 1012.215224 297.574654 0.008617 57.497546 0.223232 0.223232 -1.07e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 22.278335 21.046143 1013.250000 297.453541 0.000000 52.007390 0.428947 0.428947 -1.01e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 52.678985 22.792038 1012.215224 297.574654 0.008617 59.222332 0.229296 0.229296 3.46e-10 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 22.278335 21.247533 1013.250000 297.453541 0.000000 53.485111 0.439437 0.439437 -8.09e-11 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 52.678985 23.000809 1012.215224 297.574654 0.008617 60.314611 0.233171 0.233171 1.81e-10 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 22.278335 21.369403 1013.250000 297.453541 0.000000 54.631809 0.447641 0.447641 3.39e-10 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 52.678985 23.163948 1012.215224 297.574654 0.008617 61.161560 0.236195 0.236195 -4.61e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 22.278335 20.739431 1013.250000 297.453541 0.000000 49.513184 1.627537 1.627537 -3.62e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 52.678985 22.466488 1012.215224 297.574654 0.008617 57.497546 0.900283 0.900283 -5.50e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 22.278335 21.046143 1013.250000 297.453541 0.000000 52.007390 1.708828 1.708828 -3.79e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 52.678985 22.792038 1012.215224 297.574654 0.008617 59.222332 0.928337 0.928337 1.10e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 22.278335 21.247533 1013.250000 297.453541 0.000000 53.485111 1.757604 1.757604 -6.95e-11 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 52.678985 23.000809 1012.215224 297.574654 0.008617 60.314611 0.946255 0.946255 -2.25e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 22.278335 21.369403 1013.250000 297.453541 0.000000 54.631809 1.795751 1.795751 -5.24e-11 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 52.678985 23.163948 1012.215224 297.574654 0.008617 61.161560 0.960229 0.960229 1.51e-10 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 48.241171 24.710531 988.348774 298.058499 0.209384 70.591345 0.285722 0.285722 -2.52e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 85.804596 23.474627 1007.108268 299.605408 0.051251 62.584697 0.191743 0.191743 -4.92e-11 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 20.143358 11.723170 743.187216 290.210093 2.539862 25.925669 0.222224 0.222224 -7.43e-11 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 48.241171 25.120009 988.348774 298.058499 0.209384 72.477248 0.293396 0.293396 -3.05e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 85.804596 23.756613 1007.108268 299.605408 0.051251 63.593435 0.194664 0.194664 -4.53e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 20.143358 12.085274 743.187216 290.210093 2.539862 26.641637 0.226881 0.226881 2.16e-10 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 48.241171 25.398943 988.348774 298.058499 0.209384 73.574292 0.297904 0.297904 -4.60e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 85.804596 23.952441 1007.108268 299.605408 0.051251 64.336356 0.196825 0.196825 3.20e-11 0.000
models.itu676.gaseous_attenuation_slant_path 14.25 20.143358 12.348773 743.187216 290.210093 2.539862 27.087127 0.229798 0.229798 -1.92e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 48.241171 25.599327 988.348774 298.058499 0.209384 74.502008 0.301735 0.301735 -1.03e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 85.804596 24.105412 1007.108268 299.605408 0.051251 64.946376 0.198608 0.198608 -4.24e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 14.25 20.143358 12.547214 743.187216 290.210093 2.539862 27.511871 0.232580 0.232580 4.88e-11 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 48.241171 24.710531 988.348774 298.058499 0.209384 70.591345 1.158466 1.158466 5.10e-11 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 85.804596 23.474627 1007.108268 299.605408 0.051251 62.584697 0.778114 0.778114 4.38e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 20.143358 11.723170 743.187216 290.210093 2.539862 25.925669 0.704136 0.704136 4.69e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 48.241171 25.120009 988.348774 298.058499 0.209384 72.477248 1.192810 1.192810 2.16e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 85.804596 23.756613 1007.108268 299.605408 0.051251 63.593435 0.791490 0.791490 1.34e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 20.143358 12.085274 743.187216 290.210093 2.539862 26.641637 0.720856 0.720856 3.94e-13 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 48.241171 25.398943 988.348774 298.058499 0.209384 73.574292 1.212963 1.212963 5.56e-11 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 85.804596 23.952441 1007.108268 299.605408 0.051251 64.336356 0.801390 0.801390 -2.23e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 20.143358 12.348773 743.187216 290.210093 2.539862 27.087127 0.731314 0.731314 2.23e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 48.241171 25.599327 988.348774 298.058499 0.209384 74.502008 1.230094 1.230094 -2.70e-10 -0.000
models.itu676.gaseous_attenuation_slant_path 29.00 85.804596 24.105412 1007.108268 299.605408 0.051251 64.946376 0.809550 0.809550 4.12e-10 0.000
models.itu676.gaseous_attenuation_slant_path 29.00 20.143358 12.547214 743.187216 290.210093 2.539862 27.511871 0.741298 0.741298 6.94e-12 0.000


Function zenit_water_vapour_attenuation

The table below contains the results of testing function zenit_water_vapour_attenuation. The test cases were extracted from spreadsheet ITURP676-12_zenith_attenuation.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 0.0  #  (°N)
lon = 0.0  # (°E)
p = 0.0  # (hPa)
f = 14.25  # (GHz)
h = 0.031382983999999996  # (km)
V_t = 33.72946527  #  (kg/m2)

# Make call to test-function zenit_water_vapour_attenuation
itur_val = itur.models.itu676.zenit_water_vapour_attenuation(lat=lat, lon=lon, p=p, f=f, h=h, V_t=V_t)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.070935174  # (dB/km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu676.zenit_water_vapour_attenuation
ITU-Rpy Function lat (°N) lon (°E) p (hPa) f (GHz) h (km) V_t (kg/m2) ITU Validation (dB/km) ITU-Rpy Result (dB/km) Absolute Error Relative Error
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.031383 33.729465 0.070935 0.070935 1.14e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.046123 36.048109 0.076415 0.076415 4.43e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.000000 37.955600 0.080993 0.080993 2.82e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.031383 35.725554 0.075647 0.075647 9.46e-11 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.046123 37.513014 0.079925 0.079925 -1.76e-11 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.000000 40.511906 0.087230 0.087230 -4.29e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.031383 37.295953 0.079403 0.079403 -3.61e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.046123 38.329647 0.081899 0.081899 4.16e-11 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.000000 42.210224 0.091438 0.091438 -3.44e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.031383 38.244078 0.081691 0.081691 -3.08e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.046123 39.051281 0.083652 0.083652 4.58e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.000000 43.410461 0.094442 0.094442 4.65e-11 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.031383 33.729465 0.334146 0.334146 -1.16e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.046123 36.048109 0.358893 0.358893 1.68e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.000000 37.955600 0.383457 0.383457 -2.03e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.031383 35.725554 0.356150 0.356150 2.66e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.046123 37.513014 0.375233 0.375233 -2.68e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.000000 40.511906 0.412697 0.412697 -4.18e-11 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.031383 37.295953 0.373674 0.373674 -3.85e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.046123 38.329647 0.384412 0.384412 -3.14e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.000000 42.210224 0.432403 0.432403 3.39e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.031383 38.244078 0.384346 0.384346 2.10e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.046123 39.051281 0.392567 0.392567 2.46e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.000000 43.410461 0.446465 0.446465 3.82e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.000000 49.513184 0.110117 0.110117 -6.24e-11 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.008617 57.497546 0.131634 0.131634 4.11e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.000000 52.007390 0.116716 0.116716 9.22e-11 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.008617 59.222332 0.136433 0.136433 1.12e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.000000 53.485111 0.120678 0.120678 2.87e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.008617 60.314611 0.139500 0.139500 1.37e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.000000 54.631809 0.123780 0.123780 -3.43e-11 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.008617 61.161560 0.141893 0.141893 -3.81e-11 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.000000 49.513184 0.519700 0.519700 -2.51e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.008617 57.497546 0.618607 0.618607 -4.10e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.000000 52.007390 0.550470 0.550470 -1.29e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.008617 59.222332 0.640866 0.640866 4.06e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.000000 53.485111 0.568929 0.568929 -8.01e-11 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.008617 60.314611 0.655082 0.655082 1.67e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.000000 54.631809 0.583371 0.583371 -2.92e-11 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.008617 61.161560 0.666170 0.666170 -2.41e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.209384 70.591345 0.169409 0.169409 -5.27e-11 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.051251 62.584697 0.145943 0.145943 2.77e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 2.539862 25.925669 0.053180 0.053180 -2.29e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.209384 72.477248 0.175105 0.175105 -1.35e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.051251 63.593435 0.148835 0.148835 -2.53e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 2.539862 26.641637 0.054765 0.054765 -3.49e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.209384 73.574292 0.178448 0.178448 4.80e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.051251 64.336356 0.150977 0.150977 -1.79e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 2.539862 27.087127 0.055756 0.055756 -2.94e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.209384 74.502008 0.181291 0.181291 -2.89e-11 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 0.051251 64.946376 0.152744 0.152744 -1.11e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 14.25 2.539862 27.511871 0.056704 0.056704 -2.94e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.209384 70.591345 0.771408 0.771408 3.93e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.051251 62.584697 0.680016 0.680016 4.93e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 2.539862 25.925669 0.192886 0.192886 2.83e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.209384 72.477248 0.796963 0.796963 -4.93e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.051251 63.593435 0.693311 0.693311 3.27e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 2.539862 26.641637 0.198603 0.198603 8.58e-11 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.209384 73.574292 0.811954 0.811954 4.39e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.051251 64.336356 0.703154 0.703154 1.90e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 2.539862 27.087127 0.202174 0.202174 3.83e-10 0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.209384 74.502008 0.824702 0.824702 -2.21e-10 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 0.051251 64.946376 0.711268 0.711268 -7.39e-11 -0.000
models.itu676.zenit_water_vapour_attenuation 0.0 0.0 0.0 29.00 2.539862 27.511871 0.205590 0.205590 1.52e-10 0.000


Function gammaw_exact

The table below contains the results of testing function gammaw_exact. The test cases were extracted from spreadsheet ITURP676-12_gamma.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
f = 12.0  # (GHz)
P = 1013.25  # (hPA)
rho = 7.5  # (g/cm3)
T = 288.15  # (K)

# Make call to test-function gammaw_exact
itur_val = itur.models.itu676.gammaw_exact(f=f, P=P, rho=rho, T=T)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.009535388  # (dB/km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu676.gammaw_exact
ITU-Rpy Function f (GHz) P (hPA) rho (g/cm3) T (K) ITU Validation (dB/km) ITU-Rpy Result (dB/km) Absolute Error Relative Error
models.itu676.gammaw_exact 12.0 1013.25 7.5 288.15 0.009535 0.009535 -2.20e-10 -0.000
models.itu676.gammaw_exact 20.0 1013.25 7.5 288.15 0.097047 0.097047 1.85e-10 0.000
models.itu676.gammaw_exact 60.0 1013.25 7.5 288.15 0.154842 0.154842 3.64e-10 0.000
models.itu676.gammaw_exact 90.0 1013.25 7.5 288.15 0.341973 0.341973 -4.22e-10 -0.000
models.itu676.gammaw_exact 130.0 1013.25 7.5 288.15 0.751845 0.751845 3.54e-10 0.000
models.itu676.gammaw_exact 1.0 1013.25 7.5 288.15 0.000051 0.000051 -4.62e-09 -0.009
models.itu676.gammaw_exact 2.0 1013.25 7.5 288.15 0.000204 0.000204 -3.79e-10 -0.000
models.itu676.gammaw_exact 3.0 1013.25 7.5 288.15 0.000463 0.000463 1.44e-10 0.000
models.itu676.gammaw_exact 4.0 1013.25 7.5 288.15 0.000830 0.000830 7.72e-11 0.000
models.itu676.gammaw_exact 5.0 1013.25 7.5 288.15 0.001313 0.001313 7.88e-11 0.000
models.itu676.gammaw_exact 6.0 1013.25 7.5 288.15 0.001922 0.001922 1.96e-10 0.000
models.itu676.gammaw_exact 7.0 1013.25 7.5 288.15 0.002668 0.002668 -4.93e-10 -0.000
models.itu676.gammaw_exact 8.0 1013.25 7.5 288.15 0.003572 0.003572 -4.72e-11 -0.000
models.itu676.gammaw_exact 9.0 1013.25 7.5 288.15 0.004661 0.004661 2.64e-10 0.000
models.itu676.gammaw_exact 10.0 1013.25 7.5 288.15 0.005974 0.005974 -2.45e-10 -0.000
models.itu676.gammaw_exact 11.0 1013.25 7.5 288.15 0.007570 0.007570 2.70e-10 0.000
models.itu676.gammaw_exact 12.0 1013.25 7.5 288.15 0.009535 0.009535 -2.20e-10 -0.000
models.itu676.gammaw_exact 13.0 1013.25 7.5 288.15 0.012005 0.012005 -2.26e-10 -0.000
models.itu676.gammaw_exact 14.0 1013.25 7.5 288.15 0.015192 0.015192 4.73e-10 0.000
models.itu676.gammaw_exact 15.0 1013.25 7.5 288.15 0.019439 0.019439 2.42e-10 0.000
models.itu676.gammaw_exact 16.0 1013.25 7.5 288.15 0.025325 0.025325 -4.09e-11 -0.000
models.itu676.gammaw_exact 17.0 1013.25 7.5 288.15 0.033835 0.033835 -4.35e-10 -0.000
models.itu676.gammaw_exact 18.0 1013.25 7.5 288.15 0.046664 0.046664 4.61e-10 0.000
models.itu676.gammaw_exact 19.0 1013.25 7.5 288.15 0.066575 0.066575 2.14e-10 0.000
models.itu676.gammaw_exact 20.0 1013.25 7.5 288.15 0.097047 0.097047 1.85e-10 0.000
models.itu676.gammaw_exact 21.0 1013.25 7.5 288.15 0.137954 0.137954 6.13e-11 0.000
models.itu676.gammaw_exact 22.0 1013.25 7.5 288.15 0.174207 0.174207 -3.37e-10 -0.000
models.itu676.gammaw_exact 23.0 1013.25 7.5 288.15 0.180442 0.180442 -9.96e-11 -0.000
models.itu676.gammaw_exact 24.0 1013.25 7.5 288.15 0.158525 0.158525 -3.25e-10 -0.000
models.itu676.gammaw_exact 25.0 1013.25 7.5 288.15 0.130730 0.130730 2.96e-11 0.000
models.itu676.gammaw_exact 26.0 1013.25 7.5 288.15 0.108565 0.108565 -2.54e-10 -0.000
models.itu676.gammaw_exact 27.0 1013.25 7.5 288.15 0.093212 0.093212 1.43e-10 0.000
models.itu676.gammaw_exact 28.0 1013.25 7.5 288.15 0.083060 0.083060 -2.54e-10 -0.000
models.itu676.gammaw_exact 29.0 1013.25 7.5 288.15 0.076494 0.076494 4.35e-10 0.000
models.itu676.gammaw_exact 30.0 1013.25 7.5 288.15 0.072375 0.072375 -2.52e-11 -0.000
models.itu676.gammaw_exact 31.0 1013.25 7.5 288.15 0.069951 0.069951 -3.56e-10 -0.000
models.itu676.gammaw_exact 32.0 1013.25 7.5 288.15 0.068735 0.068735 -1.86e-11 -0.000
models.itu676.gammaw_exact 33.0 1013.25 7.5 288.15 0.068407 0.068407 2.34e-10 0.000
models.itu676.gammaw_exact 34.0 1013.25 7.5 288.15 0.068749 0.068749 -2.64e-10 -0.000
models.itu676.gammaw_exact 35.0 1013.25 7.5 288.15 0.069614 0.069614 3.75e-10 0.000
models.itu676.gammaw_exact 36.0 1013.25 7.5 288.15 0.070897 0.070897 4.40e-10 0.000
models.itu676.gammaw_exact 37.0 1013.25 7.5 288.15 0.072522 0.072522 -4.26e-10 -0.000
models.itu676.gammaw_exact 38.0 1013.25 7.5 288.15 0.074435 0.074435 -3.44e-10 -0.000
models.itu676.gammaw_exact 39.0 1013.25 7.5 288.15 0.076594 0.076594 1.88e-10 0.000
models.itu676.gammaw_exact 40.0 1013.25 7.5 288.15 0.078969 0.078969 2.16e-10 0.000
models.itu676.gammaw_exact 41.0 1013.25 7.5 288.15 0.081535 0.081535 3.69e-10 0.000
models.itu676.gammaw_exact 42.0 1013.25 7.5 288.15 0.084275 0.084275 -4.94e-10 -0.000
models.itu676.gammaw_exact 43.0 1013.25 7.5 288.15 0.087173 0.087173 4.52e-10 0.000
models.itu676.gammaw_exact 44.0 1013.25 7.5 288.15 0.090218 0.090218 7.22e-11 0.000
models.itu676.gammaw_exact 45.0 1013.25 7.5 288.15 0.093400 0.093400 -4.64e-10 -0.000
models.itu676.gammaw_exact 46.0 1013.25 7.5 288.15 0.096713 0.096713 -4.14e-10 -0.000
models.itu676.gammaw_exact 47.0 1013.25 7.5 288.15 0.100150 0.100150 -1.40e-10 -0.000
models.itu676.gammaw_exact 48.0 1013.25 7.5 288.15 0.103705 0.103705 3.53e-10 0.000
models.itu676.gammaw_exact 49.0 1013.25 7.5 288.15 0.107376 0.107376 -2.13e-10 -0.000
models.itu676.gammaw_exact 50.0 1013.25 7.5 288.15 0.111159 0.111159 -2.70e-10 -0.000
models.itu676.gammaw_exact 51.0 1013.25 7.5 288.15 0.115050 0.115050 -3.23e-10 -0.000
models.itu676.gammaw_exact 52.0 1013.25 7.5 288.15 0.119049 0.119049 -1.74e-10 -0.000
models.itu676.gammaw_exact 53.0 1013.25 7.5 288.15 0.123153 0.123153 4.02e-10 0.000
models.itu676.gammaw_exact 54.0 1013.25 7.5 288.15 0.127362 0.127362 2.51e-10 0.000
models.itu676.gammaw_exact 55.0 1013.25 7.5 288.15 0.131674 0.131674 3.02e-10 0.000
models.itu676.gammaw_exact 56.0 1013.25 7.5 288.15 0.136092 0.136092 -1.08e-10 -0.000
models.itu676.gammaw_exact 57.0 1013.25 7.5 288.15 0.140614 0.140614 -2.54e-10 -0.000
models.itu676.gammaw_exact 58.0 1013.25 7.5 288.15 0.145243 0.145243 -4.27e-10 -0.000
models.itu676.gammaw_exact 59.0 1013.25 7.5 288.15 0.149984 0.149984 -6.93e-11 -0.000
models.itu676.gammaw_exact 60.0 1013.25 7.5 288.15 0.154842 0.154842 3.64e-10 0.000
models.itu676.gammaw_exact 61.0 1013.25 7.5 288.15 0.159827 0.159827 -3.12e-10 -0.000
models.itu676.gammaw_exact 62.0 1013.25 7.5 288.15 0.164956 0.164956 -1.69e-10 -0.000
models.itu676.gammaw_exact 63.0 1013.25 7.5 288.15 0.170255 0.170255 4.55e-10 0.000
models.itu676.gammaw_exact 64.0 1013.25 7.5 288.15 0.175765 0.175765 4.22e-10 0.000
models.itu676.gammaw_exact 65.0 1013.25 7.5 288.15 0.181535 0.181535 2.23e-10 0.000
models.itu676.gammaw_exact 66.0 1013.25 7.5 288.15 0.187578 0.187578 -1.55e-10 -0.000
models.itu676.gammaw_exact 67.0 1013.25 7.5 288.15 0.193727 0.193727 -4.67e-10 -0.000
models.itu676.gammaw_exact 68.0 1013.25 7.5 288.15 0.199555 0.199555 -2.42e-10 -0.000
models.itu676.gammaw_exact 69.0 1013.25 7.5 288.15 0.204833 0.204833 -2.56e-10 -0.000
models.itu676.gammaw_exact 70.0 1013.25 7.5 288.15 0.209888 0.209888 -3.64e-10 -0.000
models.itu676.gammaw_exact 71.0 1013.25 7.5 288.15 0.215079 0.215079 -3.48e-10 -0.000
models.itu676.gammaw_exact 72.0 1013.25 7.5 288.15 0.220517 0.220517 -7.24e-11 -0.000
models.itu676.gammaw_exact 73.0 1013.25 7.5 288.15 0.226186 0.226186 -4.90e-10 -0.000
models.itu676.gammaw_exact 74.0 1013.25 7.5 288.15 0.232047 0.232047 7.45e-11 0.000
models.itu676.gammaw_exact 75.0 1013.25 7.5 288.15 0.238069 0.238069 7.76e-11 0.000
models.itu676.gammaw_exact 76.0 1013.25 7.5 288.15 0.244231 0.244231 -7.08e-11 -0.000
models.itu676.gammaw_exact 77.0 1013.25 7.5 288.15 0.250518 0.250518 3.58e-10 0.000
models.itu676.gammaw_exact 78.0 1013.25 7.5 288.15 0.256922 0.256922 -6.14e-12 -0.000
models.itu676.gammaw_exact 79.0 1013.25 7.5 288.15 0.263437 0.263437 2.05e-10 0.000
models.itu676.gammaw_exact 80.0 1013.25 7.5 288.15 0.270060 0.270060 4.24e-10 0.000
models.itu676.gammaw_exact 81.0 1013.25 7.5 288.15 0.276788 0.276788 1.85e-10 0.000
models.itu676.gammaw_exact 82.0 1013.25 7.5 288.15 0.283621 0.283621 -4.21e-10 -0.000
models.itu676.gammaw_exact 83.0 1013.25 7.5 288.15 0.290556 0.290556 -2.26e-10 -0.000
models.itu676.gammaw_exact 84.0 1013.25 7.5 288.15 0.297593 0.297593 2.57e-10 0.000
models.itu676.gammaw_exact 85.0 1013.25 7.5 288.15 0.304733 0.304733 1.28e-10 0.000
models.itu676.gammaw_exact 86.0 1013.25 7.5 288.15 0.311975 0.311975 -1.26e-10 -0.000
models.itu676.gammaw_exact 87.0 1013.25 7.5 288.15 0.319320 0.319320 2.86e-10 0.000
models.itu676.gammaw_exact 88.0 1013.25 7.5 288.15 0.326767 0.326767 4.60e-12 0.000
models.itu676.gammaw_exact 89.0 1013.25 7.5 288.15 0.334318 0.334318 2.17e-11 0.000
models.itu676.gammaw_exact 90.0 1013.25 7.5 288.15 0.341973 0.341973 -4.22e-10 -0.000
models.itu676.gammaw_exact 91.0 1013.25 7.5 288.15 0.349733 0.349733 -3.33e-10 -0.000
models.itu676.gammaw_exact 92.0 1013.25 7.5 288.15 0.357598 0.357598 -3.94e-10 -0.000
models.itu676.gammaw_exact 93.0 1013.25 7.5 288.15 0.365570 0.365570 -3.87e-10 -0.000
models.itu676.gammaw_exact 94.0 1013.25 7.5 288.15 0.373648 0.373648 1.10e-11 0.000
models.itu676.gammaw_exact 95.0 1013.25 7.5 288.15 0.381835 0.381835 4.09e-10 0.000
models.itu676.gammaw_exact 96.0 1013.25 7.5 288.15 0.390131 0.390131 5.12e-11 0.000
models.itu676.gammaw_exact 97.0 1013.25 7.5 288.15 0.398538 0.398538 3.53e-10 0.000
models.itu676.gammaw_exact 98.0 1013.25 7.5 288.15 0.407056 0.407056 4.96e-10 0.000
models.itu676.gammaw_exact 99.0 1013.25 7.5 288.15 0.415687 0.415687 -2.06e-10 -0.000
models.itu676.gammaw_exact 100.0 1013.25 7.5 288.15 0.424434 0.424434 3.27e-10 0.000
models.itu676.gammaw_exact 101.0 1013.25 7.5 288.15 0.433296 0.433296 6.22e-11 0.000
models.itu676.gammaw_exact 102.0 1013.25 7.5 288.15 0.442276 0.442276 2.72e-10 0.000
models.itu676.gammaw_exact 103.0 1013.25 7.5 288.15 0.451376 0.451376 4.62e-10 0.000
models.itu676.gammaw_exact 104.0 1013.25 7.5 288.15 0.460599 0.460599 5.67e-11 0.000
models.itu676.gammaw_exact 105.0 1013.25 7.5 288.15 0.469945 0.469945 -3.83e-10 -0.000
models.itu676.gammaw_exact 106.0 1013.25 7.5 288.15 0.479419 0.479419 -5.01e-11 -0.000
models.itu676.gammaw_exact 107.0 1013.25 7.5 288.15 0.489024 0.489024 4.91e-10 0.000
models.itu676.gammaw_exact 108.0 1013.25 7.5 288.15 0.498762 0.498762 -3.38e-10 -0.000
models.itu676.gammaw_exact 109.0 1013.25 7.5 288.15 0.508640 0.508640 -4.67e-10 -0.000
models.itu676.gammaw_exact 110.0 1013.25 7.5 288.15 0.518661 0.518661 4.78e-10 0.000
models.itu676.gammaw_exact 111.0 1013.25 7.5 288.15 0.528835 0.528835 -2.82e-10 -0.000
models.itu676.gammaw_exact 112.0 1013.25 7.5 288.15 0.539170 0.539170 4.53e-11 0.000
models.itu676.gammaw_exact 113.0 1013.25 7.5 288.15 0.549681 0.549681 1.80e-10 0.000
models.itu676.gammaw_exact 114.0 1013.25 7.5 288.15 0.560388 0.560388 2.29e-10 0.000
models.itu676.gammaw_exact 115.0 1013.25 7.5 288.15 0.571322 0.571322 4.10e-10 0.000
models.itu676.gammaw_exact 116.0 1013.25 7.5 288.15 0.582526 0.582526 -3.57e-10 -0.000
models.itu676.gammaw_exact 117.0 1013.25 7.5 288.15 0.594053 0.594053 -2.83e-11 -0.000
models.itu676.gammaw_exact 118.0 1013.25 7.5 288.15 0.605922 0.605922 4.06e-10 0.000
models.itu676.gammaw_exact 119.0 1013.25 7.5 288.15 0.617993 0.617993 5.33e-11 0.000
models.itu676.gammaw_exact 120.0 1013.25 7.5 288.15 0.629861 0.629861 7.98e-11 0.000
models.itu676.gammaw_exact 121.0 1013.25 7.5 288.15 0.641222 0.641222 -3.07e-10 -0.000
models.itu676.gammaw_exact 122.0 1013.25 7.5 288.15 0.652345 0.652345 6.55e-11 0.000
models.itu676.gammaw_exact 123.0 1013.25 7.5 288.15 0.663647 0.663647 1.99e-10 0.000
models.itu676.gammaw_exact 124.0 1013.25 7.5 288.15 0.675301 0.675301 -3.65e-10 -0.000
models.itu676.gammaw_exact 125.0 1013.25 7.5 288.15 0.687313 0.687313 -4.22e-10 -0.000
models.itu676.gammaw_exact 126.0 1013.25 7.5 288.15 0.699649 0.699649 -3.95e-10 -0.000
models.itu676.gammaw_exact 127.0 1013.25 7.5 288.15 0.712282 0.712282 4.27e-10 0.000
models.itu676.gammaw_exact 128.0 1013.25 7.5 288.15 0.725196 0.725196 3.58e-10 0.000
models.itu676.gammaw_exact 129.0 1013.25 7.5 288.15 0.738383 0.738383 1.72e-10 0.000
models.itu676.gammaw_exact 130.0 1013.25 7.5 288.15 0.751845 0.751845 3.54e-10 0.000
models.itu676.gammaw_exact 131.0 1013.25 7.5 288.15 0.765585 0.765585 2.65e-10 0.000
models.itu676.gammaw_exact 132.0 1013.25 7.5 288.15 0.779613 0.779613 1.24e-10 0.000
models.itu676.gammaw_exact 133.0 1013.25 7.5 288.15 0.793940 0.793940 -4.15e-10 -0.000
models.itu676.gammaw_exact 134.0 1013.25 7.5 288.15 0.808581 0.808581 3.94e-10 0.000
models.itu676.gammaw_exact 135.0 1013.25 7.5 288.15 0.823553 0.823553 -2.68e-10 -0.000
models.itu676.gammaw_exact 136.0 1013.25 7.5 288.15 0.838874 0.838874 -1.93e-10 -0.000
models.itu676.gammaw_exact 137.0 1013.25 7.5 288.15 0.854566 0.854566 -2.96e-10 -0.000
models.itu676.gammaw_exact 138.0 1013.25 7.5 288.15 0.870653 0.870653 1.26e-10 0.000
models.itu676.gammaw_exact 139.0 1013.25 7.5 288.15 0.887164 0.887164 -4.46e-10 -0.000
models.itu676.gammaw_exact 140.0 1013.25 7.5 288.15 0.904129 0.904129 3.74e-10 0.000
models.itu676.gammaw_exact 141.0 1013.25 7.5 288.15 0.921583 0.921583 -2.84e-10 -0.000
models.itu676.gammaw_exact 142.0 1013.25 7.5 288.15 0.939565 0.939565 -1.83e-11 -0.000
models.itu676.gammaw_exact 143.0 1013.25 7.5 288.15 0.958119 0.958119 -3.78e-10 -0.000
models.itu676.gammaw_exact 144.0 1013.25 7.5 288.15 0.977295 0.977295 4.40e-11 0.000
models.itu676.gammaw_exact 145.0 1013.25 7.5 288.15 0.997150 0.997150 2.56e-10 0.000
models.itu676.gammaw_exact 146.0 1013.25 7.5 288.15 1.017749 1.017749 -4.84e-10 -0.000
models.itu676.gammaw_exact 147.0 1013.25 7.5 288.15 1.039164 1.039164 4.42e-10 0.000
models.itu676.gammaw_exact 148.0 1013.25 7.5 288.15 1.061480 1.061480 1.75e-10 0.000
models.itu676.gammaw_exact 149.0 1013.25 7.5 288.15 1.084794 1.084794 -4.40e-10 -0.000
models.itu676.gammaw_exact 150.0 1013.25 7.5 288.15 1.109218 1.109218 7.61e-11 0.000
models.itu676.gammaw_exact 151.0 1013.25 7.5 288.15 1.134879 1.134879 -1.31e-11 -0.000
models.itu676.gammaw_exact 152.0 1013.25 7.5 288.15 1.161928 1.161928 3.59e-10 0.000
models.itu676.gammaw_exact 153.0 1013.25 7.5 288.15 1.190540 1.190540 -2.91e-10 -0.000
models.itu676.gammaw_exact 154.0 1013.25 7.5 288.15 1.220920 1.220920 -2.04e-10 -0.000
models.itu676.gammaw_exact 155.0 1013.25 7.5 288.15 1.253309 1.253309 -1.63e-10 -0.000
models.itu676.gammaw_exact 156.0 1013.25 7.5 288.15 1.287995 1.287995 4.17e-10 0.000
models.itu676.gammaw_exact 157.0 1013.25 7.5 288.15 1.325319 1.325319 7.23e-11 0.000
models.itu676.gammaw_exact 158.0 1013.25 7.5 288.15 1.365690 1.365690 -1.20e-10 -0.000
models.itu676.gammaw_exact 159.0 1013.25 7.5 288.15 1.409602 1.409602 -2.34e-10 -0.000
models.itu676.gammaw_exact 160.0 1013.25 7.5 288.15 1.457655 1.457655 1.63e-11 0.000
models.itu676.gammaw_exact 161.0 1013.25 7.5 288.15 1.510584 1.510584 1.88e-10 0.000
models.itu676.gammaw_exact 162.0 1013.25 7.5 288.15 1.569294 1.569294 -4.93e-10 -0.000
models.itu676.gammaw_exact 163.0 1013.25 7.5 288.15 1.634915 1.634915 1.21e-11 0.000
models.itu676.gammaw_exact 164.0 1013.25 7.5 288.15 1.708862 1.708862 2.32e-10 0.000
models.itu676.gammaw_exact 165.0 1013.25 7.5 288.15 1.792933 1.792933 -5.35e-11 -0.000
models.itu676.gammaw_exact 166.0 1013.25 7.5 288.15 1.889435 1.889435 -1.80e-10 -0.000
models.itu676.gammaw_exact 167.0 1013.25 7.5 288.15 2.001362 2.001362 -7.31e-11 -0.000
models.itu676.gammaw_exact 168.0 1013.25 7.5 288.15 2.132651 2.132651 -4.20e-10 -0.000
models.itu676.gammaw_exact 169.0 1013.25 7.5 288.15 2.288555 2.288555 -2.68e-10 -0.000
models.itu676.gammaw_exact 170.0 1013.25 7.5 288.15 2.476195 2.476195 6.14e-11 0.000
models.itu676.gammaw_exact 171.0 1013.25 7.5 288.15 2.705381 2.705381 -3.20e-10 -0.000
models.itu676.gammaw_exact 172.0 1013.25 7.5 288.15 2.989890 2.989890 4.12e-10 0.000
models.itu676.gammaw_exact 173.0 1013.25 7.5 288.15 3.349462 3.349462 2.25e-10 0.000
models.itu676.gammaw_exact 174.0 1013.25 7.5 288.15 3.812987 3.812987 4.21e-10 0.000
models.itu676.gammaw_exact 175.0 1013.25 7.5 288.15 4.423707 4.423707 8.91e-11 0.000
models.itu676.gammaw_exact 176.0 1013.25 7.5 288.15 5.247745 5.247745 4.84e-10 0.000
models.itu676.gammaw_exact 177.0 1013.25 7.5 288.15 6.387977 6.387977 -2.37e-10 -0.000
models.itu676.gammaw_exact 178.0 1013.25 7.5 288.15 8.005218 8.005218 -1.66e-10 -0.000
models.itu676.gammaw_exact 179.0 1013.25 7.5 288.15 10.343578 10.343578 5.71e-11 0.000
models.itu676.gammaw_exact 180.0 1013.25 7.5 288.15 13.728458 13.728458 -4.43e-09 -0.000
models.itu676.gammaw_exact 181.0 1013.25 7.5 288.15 18.399102 18.399102 -5.25e-10 -0.000
models.itu676.gammaw_exact 182.0 1013.25 7.5 288.15 23.830459 23.830459 2.78e-09 0.000
models.itu676.gammaw_exact 183.0 1013.25 7.5 288.15 27.665008 27.665008 -4.17e-09 -0.000
models.itu676.gammaw_exact 184.0 1013.25 7.5 288.15 27.024838 27.024838 -4.47e-09 -0.000
models.itu676.gammaw_exact 185.0 1013.25 7.5 288.15 22.603713 22.603713 2.25e-09 0.000
models.itu676.gammaw_exact 186.0 1013.25 7.5 288.15 17.480866 17.480866 2.32e-09 0.000
models.itu676.gammaw_exact 187.0 1013.25 7.5 288.15 13.340008 13.340008 3.99e-09 0.000
models.itu676.gammaw_exact 188.0 1013.25 7.5 288.15 10.372561 10.372561 -5.48e-11 -0.000
models.itu676.gammaw_exact 189.0 1013.25 7.5 288.15 8.306314 8.306314 2.15e-10 0.000
models.itu676.gammaw_exact 190.0 1013.25 7.5 288.15 6.858142 6.858142 -3.79e-10 -0.000
models.itu676.gammaw_exact 191.0 1013.25 7.5 288.15 5.823870 5.823870 -2.31e-10 -0.000
models.itu676.gammaw_exact 192.0 1013.25 7.5 288.15 5.068900 5.068900 -3.02e-11 -0.000
models.itu676.gammaw_exact 193.0 1013.25 7.5 288.15 4.506007 4.506007 -1.51e-10 -0.000
models.itu676.gammaw_exact 194.0 1013.25 7.5 288.15 4.078184 4.078184 -8.23e-11 -0.000
models.itu676.gammaw_exact 195.0 1013.25 7.5 288.15 3.747495 3.747495 -4.54e-10 -0.000
models.itu676.gammaw_exact 196.0 1013.25 7.5 288.15 3.488154 3.488154 -4.79e-10 -0.000
models.itu676.gammaw_exact 197.0 1013.25 7.5 288.15 3.282257 3.282257 4.74e-10 0.000
models.itu676.gammaw_exact 198.0 1013.25 7.5 288.15 3.117111 3.117111 -2.60e-10 -0.000
models.itu676.gammaw_exact 199.0 1013.25 7.5 288.15 2.983548 2.983548 -2.23e-10 -0.000
models.itu676.gammaw_exact 200.0 1013.25 7.5 288.15 2.874824 2.874824 8.12e-11 0.000
models.itu676.gammaw_exact 201.0 1013.25 7.5 288.15 2.785901 2.785901 3.81e-10 0.000
models.itu676.gammaw_exact 202.0 1013.25 7.5 288.15 2.712953 2.712953 -1.21e-10 -0.000
models.itu676.gammaw_exact 203.0 1013.25 7.5 288.15 2.653040 2.653040 -1.88e-10 -0.000
models.itu676.gammaw_exact 204.0 1013.25 7.5 288.15 2.603874 2.603874 4.56e-10 0.000
models.itu676.gammaw_exact 205.0 1013.25 7.5 288.15 2.563651 2.563651 -1.71e-11 -0.000
models.itu676.gammaw_exact 206.0 1013.25 7.5 288.15 2.530936 2.530936 4.55e-10 0.000
models.itu676.gammaw_exact 207.0 1013.25 7.5 288.15 2.504575 2.504575 2.43e-10 0.000
models.itu676.gammaw_exact 208.0 1013.25 7.5 288.15 2.483635 2.483635 2.58e-11 0.000
models.itu676.gammaw_exact 209.0 1013.25 7.5 288.15 2.467350 2.467350 -4.26e-10 -0.000
models.itu676.gammaw_exact 210.0 1013.25 7.5 288.15 2.455091 2.455091 -2.25e-10 -0.000
models.itu676.gammaw_exact 211.0 1013.25 7.5 288.15 2.446336 2.446336 2.47e-10 0.000
models.itu676.gammaw_exact 212.0 1013.25 7.5 288.15 2.440648 2.440648 4.97e-10 0.000
models.itu676.gammaw_exact 213.0 1013.25 7.5 288.15 2.437662 2.437662 2.95e-10 0.000
models.itu676.gammaw_exact 214.0 1013.25 7.5 288.15 2.437068 2.437068 -4.04e-10 -0.000
models.itu676.gammaw_exact 215.0 1013.25 7.5 288.15 2.438603 2.438603 -2.70e-10 -0.000
models.itu676.gammaw_exact 216.0 1013.25 7.5 288.15 2.442042 2.442042 2.94e-10 0.000
models.itu676.gammaw_exact 217.0 1013.25 7.5 288.15 2.447193 2.447193 1.67e-10 0.000
models.itu676.gammaw_exact 218.0 1013.25 7.5 288.15 2.453891 2.453891 7.04e-11 0.000
models.itu676.gammaw_exact 219.0 1013.25 7.5 288.15 2.461991 2.461991 -3.51e-10 -0.000
models.itu676.gammaw_exact 220.0 1013.25 7.5 288.15 2.471371 2.471371 4.15e-10 0.000
models.itu676.gammaw_exact 221.0 1013.25 7.5 288.15 2.481920 2.481920 1.09e-10 0.000
models.itu676.gammaw_exact 222.0 1013.25 7.5 288.15 2.493546 2.493546 -2.36e-10 -0.000
models.itu676.gammaw_exact 223.0 1013.25 7.5 288.15 2.506164 2.506164 -2.80e-11 -0.000
models.itu676.gammaw_exact 224.0 1013.25 7.5 288.15 2.519702 2.519702 4.07e-10 0.000
models.itu676.gammaw_exact 225.0 1013.25 7.5 288.15 2.534095 2.534095 -1.60e-10 -0.000
models.itu676.gammaw_exact 226.0 1013.25 7.5 288.15 2.549288 2.549288 -2.85e-10 -0.000
models.itu676.gammaw_exact 227.0 1013.25 7.5 288.15 2.565229 2.565229 -2.27e-10 -0.000
models.itu676.gammaw_exact 228.0 1013.25 7.5 288.15 2.581875 2.581875 -2.25e-10 -0.000
models.itu676.gammaw_exact 229.0 1013.25 7.5 288.15 2.599186 2.599186 4.31e-10 0.000
models.itu676.gammaw_exact 230.0 1013.25 7.5 288.15 2.617127 2.617127 5.74e-12 0.000
models.itu676.gammaw_exact 231.0 1013.25 7.5 288.15 2.635666 2.635666 2.87e-10 0.000
models.itu676.gammaw_exact 232.0 1013.25 7.5 288.15 2.654776 2.654776 -3.44e-10 -0.000
models.itu676.gammaw_exact 233.0 1013.25 7.5 288.15 2.674433 2.674433 -4.42e-10 -0.000
models.itu676.gammaw_exact 234.0 1013.25 7.5 288.15 2.694613 2.694613 -2.74e-10 -0.000
models.itu676.gammaw_exact 235.0 1013.25 7.5 288.15 2.715299 2.715299 -5.39e-11 -0.000
models.itu676.gammaw_exact 236.0 1013.25 7.5 288.15 2.736471 2.736471 -1.84e-10 -0.000
models.itu676.gammaw_exact 237.0 1013.25 7.5 288.15 2.758115 2.758115 -5.87e-11 -0.000
models.itu676.gammaw_exact 238.0 1013.25 7.5 288.15 2.780217 2.780217 8.95e-11 0.000
models.itu676.gammaw_exact 239.0 1013.25 7.5 288.15 2.802764 2.802764 1.40e-10 0.000
models.itu676.gammaw_exact 240.0 1013.25 7.5 288.15 2.825747 2.825747 4.40e-11 0.000
models.itu676.gammaw_exact 241.0 1013.25 7.5 288.15 2.849156 2.849156 -4.81e-10 -0.000
models.itu676.gammaw_exact 242.0 1013.25 7.5 288.15 2.872982 2.872982 -2.08e-10 -0.000
models.itu676.gammaw_exact 243.0 1013.25 7.5 288.15 2.897219 2.897219 3.41e-10 0.000
models.itu676.gammaw_exact 244.0 1013.25 7.5 288.15 2.921860 2.921860 2.94e-10 0.000
models.itu676.gammaw_exact 245.0 1013.25 7.5 288.15 2.946902 2.946902 -8.64e-11 -0.000
models.itu676.gammaw_exact 246.0 1013.25 7.5 288.15 2.972339 2.972339 3.36e-10 0.000
models.itu676.gammaw_exact 247.0 1013.25 7.5 288.15 2.998168 2.998168 -3.91e-10 -0.000
models.itu676.gammaw_exact 248.0 1013.25 7.5 288.15 3.024387 3.024387 -1.28e-10 -0.000
models.itu676.gammaw_exact 249.0 1013.25 7.5 288.15 3.050995 3.050995 4.00e-10 0.000
models.itu676.gammaw_exact 250.0 1013.25 7.5 288.15 3.077990 3.077990 1.21e-10 0.000
models.itu676.gammaw_exact 251.0 1013.25 7.5 288.15 3.105372 3.105372 1.04e-10 0.000
models.itu676.gammaw_exact 252.0 1013.25 7.5 288.15 3.133141 3.133141 4.16e-10 0.000
models.itu676.gammaw_exact 253.0 1013.25 7.5 288.15 3.161300 3.161300 -3.25e-10 -0.000
models.itu676.gammaw_exact 254.0 1013.25 7.5 288.15 3.189848 3.189848 -4.54e-10 -0.000
models.itu676.gammaw_exact 255.0 1013.25 7.5 288.15 3.218790 3.218790 3.39e-10 0.000
models.itu676.gammaw_exact 256.0 1013.25 7.5 288.15 3.248127 3.248127 -1.86e-10 -0.000
models.itu676.gammaw_exact 257.0 1013.25 7.5 288.15 3.277865 3.277865 2.51e-10 0.000
models.itu676.gammaw_exact 258.0 1013.25 7.5 288.15 3.308006 3.308006 -2.83e-10 -0.000
models.itu676.gammaw_exact 259.0 1013.25 7.5 288.15 3.338557 3.338557 4.77e-10 0.000
models.itu676.gammaw_exact 260.0 1013.25 7.5 288.15 3.369523 3.369523 3.59e-10 0.000
models.itu676.gammaw_exact 261.0 1013.25 7.5 288.15 3.400910 3.400910 -1.47e-10 -0.000
models.itu676.gammaw_exact 262.0 1013.25 7.5 288.15 3.432726 3.432726 -3.72e-10 -0.000
models.itu676.gammaw_exact 263.0 1013.25 7.5 288.15 3.464979 3.464979 8.01e-11 0.000
models.itu676.gammaw_exact 264.0 1013.25 7.5 288.15 3.497677 3.497677 4.26e-10 0.000
models.itu676.gammaw_exact 265.0 1013.25 7.5 288.15 3.530831 3.530831 -2.51e-10 -0.000
models.itu676.gammaw_exact 266.0 1013.25 7.5 288.15 3.564451 3.564451 3.07e-10 0.000
models.itu676.gammaw_exact 267.0 1013.25 7.5 288.15 3.598549 3.598549 2.46e-10 0.000
models.itu676.gammaw_exact 268.0 1013.25 7.5 288.15 3.633137 3.633137 -2.46e-10 -0.000
models.itu676.gammaw_exact 269.0 1013.25 7.5 288.15 3.668230 3.668230 4.61e-10 0.000
models.itu676.gammaw_exact 270.0 1013.25 7.5 288.15 3.703843 3.703843 -2.70e-10 -0.000
models.itu676.gammaw_exact 271.0 1013.25 7.5 288.15 3.739992 3.739992 2.09e-10 0.000
models.itu676.gammaw_exact 272.0 1013.25 7.5 288.15 3.776695 3.776695 -2.73e-10 -0.000
models.itu676.gammaw_exact 273.0 1013.25 7.5 288.15 3.813971 3.813971 3.02e-10 0.000
models.itu676.gammaw_exact 274.0 1013.25 7.5 288.15 3.851844 3.851844 -4.14e-10 -0.000
models.itu676.gammaw_exact 275.0 1013.25 7.5 288.15 3.890335 3.890335 -4.01e-10 -0.000
models.itu676.gammaw_exact 276.0 1013.25 7.5 288.15 3.929471 3.929471 3.41e-11 0.000
models.itu676.gammaw_exact 277.0 1013.25 7.5 288.15 3.969279 3.969279 -3.16e-10 -0.000
models.itu676.gammaw_exact 278.0 1013.25 7.5 288.15 4.009791 4.009791 -3.08e-10 -0.000
models.itu676.gammaw_exact 279.0 1013.25 7.5 288.15 4.051041 4.051041 3.06e-10 0.000
models.itu676.gammaw_exact 280.0 1013.25 7.5 288.15 4.093065 4.093065 -4.81e-10 -0.000
models.itu676.gammaw_exact 281.0 1013.25 7.5 288.15 4.135906 4.135906 4.53e-10 0.000
models.itu676.gammaw_exact 282.0 1013.25 7.5 288.15 4.179609 4.179609 3.91e-10 0.000
models.itu676.gammaw_exact 283.0 1013.25 7.5 288.15 4.224225 4.224225 3.01e-11 0.000
models.itu676.gammaw_exact 284.0 1013.25 7.5 288.15 4.269810 4.269810 -4.46e-10 -0.000
models.itu676.gammaw_exact 285.0 1013.25 7.5 288.15 4.316428 4.316428 4.53e-10 0.000
models.itu676.gammaw_exact 286.0 1013.25 7.5 288.15 4.364148 4.364148 4.08e-10 0.000
models.itu676.gammaw_exact 287.0 1013.25 7.5 288.15 4.413050 4.413050 -2.78e-10 -0.000
models.itu676.gammaw_exact 288.0 1013.25 7.5 288.15 4.463223 4.463223 3.86e-10 0.000
models.itu676.gammaw_exact 289.0 1013.25 7.5 288.15 4.514767 4.514767 4.41e-10 0.000
models.itu676.gammaw_exact 290.0 1013.25 7.5 288.15 4.567797 4.567797 1.79e-10 0.000
models.itu676.gammaw_exact 291.0 1013.25 7.5 288.15 4.622443 4.622443 8.59e-11 0.000
models.itu676.gammaw_exact 292.0 1013.25 7.5 288.15 4.678854 4.678854 6.54e-11 0.000
models.itu676.gammaw_exact 293.0 1013.25 7.5 288.15 4.737200 4.737200 -1.58e-10 -0.000
models.itu676.gammaw_exact 294.0 1013.25 7.5 288.15 4.797679 4.797679 2.73e-10 0.000
models.itu676.gammaw_exact 295.0 1013.25 7.5 288.15 4.860520 4.860520 -4.60e-10 -0.000
models.itu676.gammaw_exact 296.0 1013.25 7.5 288.15 4.925989 4.925989 -4.83e-10 -0.000
models.itu676.gammaw_exact 297.0 1013.25 7.5 288.15 4.994400 4.994400 -1.51e-10 -0.000
models.itu676.gammaw_exact 298.0 1013.25 7.5 288.15 5.066121 5.066121 -3.86e-10 -0.000
models.itu676.gammaw_exact 299.0 1013.25 7.5 288.15 5.141589 5.141589 5.29e-11 0.000
models.itu676.gammaw_exact 300.0 1013.25 7.5 288.15 5.221329 5.221329 -1.05e-10 -0.000
models.itu676.gammaw_exact 301.0 1013.25 7.5 288.15 5.305969 5.305969 3.57e-10 0.000
models.itu676.gammaw_exact 302.0 1013.25 7.5 288.15 5.396270 5.396270 -2.00e-10 -0.000
models.itu676.gammaw_exact 303.0 1013.25 7.5 288.15 5.493166 5.493166 -5.73e-11 -0.000
models.itu676.gammaw_exact 304.0 1013.25 7.5 288.15 5.597805 5.597805 -2.14e-10 -0.000
models.itu676.gammaw_exact 305.0 1013.25 7.5 288.15 5.711616 5.711616 -1.55e-10 -0.000
models.itu676.gammaw_exact 306.0 1013.25 7.5 288.15 5.836397 5.836397 3.92e-10 0.000
models.itu676.gammaw_exact 307.0 1013.25 7.5 288.15 5.974431 5.974431 4.62e-10 0.000
models.itu676.gammaw_exact 308.0 1013.25 7.5 288.15 6.128660 6.128660 -3.56e-10 -0.000
models.itu676.gammaw_exact 309.0 1013.25 7.5 288.15 6.302915 6.302915 -4.74e-10 -0.000
models.itu676.gammaw_exact 310.0 1013.25 7.5 288.15 6.502269 6.502269 1.25e-10 0.000
models.itu676.gammaw_exact 311.0 1013.25 7.5 288.15 6.733539 6.733539 -5.26e-11 -0.000
models.itu676.gammaw_exact 312.0 1013.25 7.5 288.15 7.006054 7.006054 -1.15e-10 -0.000
models.itu676.gammaw_exact 313.0 1013.25 7.5 288.15 7.332839 7.332839 1.12e-10 0.000
models.itu676.gammaw_exact 314.0 1013.25 7.5 288.15 7.732474 7.732474 -2.90e-10 -0.000
models.itu676.gammaw_exact 315.0 1013.25 7.5 288.15 8.232112 8.232112 3.91e-10 0.000
models.itu676.gammaw_exact 316.0 1013.25 7.5 288.15 8.872465 8.872465 -3.46e-11 -0.000
models.itu676.gammaw_exact 317.0 1013.25 7.5 288.15 9.716073 9.716073 7.11e-12 0.000
models.itu676.gammaw_exact 318.0 1013.25 7.5 288.15 10.860390 10.860390 1.40e-09 0.000
models.itu676.gammaw_exact 319.0 1013.25 7.5 288.15 12.453804 12.453804 -3.75e-10 -0.000
models.itu676.gammaw_exact 320.0 1013.25 7.5 288.15 14.694418 14.694418 -2.06e-09 -0.000
models.itu676.gammaw_exact 321.0 1013.25 7.5 288.15 17.779900 17.779900 -2.11e-09 -0.000
models.itu676.gammaw_exact 322.0 1013.25 7.5 288.15 21.958394 21.958394 1.44e-09 0.000
models.itu676.gammaw_exact 323.0 1013.25 7.5 288.15 27.584296 27.584296 1.32e-09 0.000
models.itu676.gammaw_exact 324.0 1013.25 7.5 288.15 33.980828 33.980828 4.39e-09 0.000
models.itu676.gammaw_exact 325.0 1013.25 7.5 288.15 37.862111 37.862111 -1.15e-09 -0.000
models.itu676.gammaw_exact 326.0 1013.25 7.5 288.15 35.904757 35.904757 4.96e-09 0.000
models.itu676.gammaw_exact 327.0 1013.25 7.5 288.15 29.947920 29.947920 1.76e-09 0.000
models.itu676.gammaw_exact 328.0 1013.25 7.5 288.15 23.872443 23.872443 3.09e-09 0.000
models.itu676.gammaw_exact 329.0 1013.25 7.5 288.15 19.264553 19.264553 3.08e-09 0.000
models.itu676.gammaw_exact 330.0 1013.25 7.5 288.15 16.084329 16.084329 3.44e-09 0.000
models.itu676.gammaw_exact 331.0 1013.25 7.5 288.15 13.929485 13.929485 -3.04e-09 -0.000
models.itu676.gammaw_exact 332.0 1013.25 7.5 288.15 12.457413 12.457413 4.69e-09 0.000
models.itu676.gammaw_exact 333.0 1013.25 7.5 288.15 11.436764 11.436764 3.81e-09 0.000
models.itu676.gammaw_exact 334.0 1013.25 7.5 288.15 10.719742 10.719742 -2.03e-09 -0.000
models.itu676.gammaw_exact 335.0 1013.25 7.5 288.15 10.211790 10.211790 8.85e-10 0.000
models.itu676.gammaw_exact 336.0 1013.25 7.5 288.15 9.850283 9.850283 2.91e-11 0.000
models.itu676.gammaw_exact 337.0 1013.25 7.5 288.15 9.592983 9.592983 1.44e-10 0.000
models.itu676.gammaw_exact 338.0 1013.25 7.5 288.15 9.413703 9.413703 -1.76e-10 -0.000
models.itu676.gammaw_exact 339.0 1013.25 7.5 288.15 9.296113 9.296113 3.43e-10 0.000
models.itu676.gammaw_exact 340.0 1013.25 7.5 288.15 9.228131 9.228131 -3.86e-10 -0.000
models.itu676.gammaw_exact 341.0 1013.25 7.5 288.15 9.200536 9.200536 1.75e-10 0.000
models.itu676.gammaw_exact 342.0 1013.25 7.5 288.15 9.206573 9.206573 2.20e-10 0.000
models.itu676.gammaw_exact 343.0 1013.25 7.5 288.15 9.241420 9.241420 -1.59e-10 -0.000
models.itu676.gammaw_exact 344.0 1013.25 7.5 288.15 9.301710 9.301710 1.14e-11 0.000
models.itu676.gammaw_exact 345.0 1013.25 7.5 288.15 9.385171 9.385171 4.16e-10 0.000
models.itu676.gammaw_exact 346.0 1013.25 7.5 288.15 9.490383 9.490383 -4.91e-10 -0.000
models.itu676.gammaw_exact 347.0 1013.25 7.5 288.15 9.616617 9.616617 2.70e-10 0.000
models.itu676.gammaw_exact 348.0 1013.25 7.5 288.15 9.763734 9.763734 -2.46e-10 -0.000
models.itu676.gammaw_exact 349.0 1013.25 7.5 288.15 9.932122 9.932122 -2.47e-10 -0.000
models.itu676.gammaw_exact 350.0 1013.25 7.5 288.15 10.122673 10.122673 4.87e-10 0.000


Function gamma0_exact

The table below contains the results of testing function gamma0_exact. The test cases were extracted from spreadsheet ITURP676-12_gamma.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
f = 12.0  # (GHz)
P = 1013.25  # (hPA)
rho = 7.5  # (g/cm3)
T = 288.15  # (K)

# Make call to test-function gamma0_exact
itur_val = itur.models.itu676.gamma0_exact(f=f, P=P, rho=rho, T=T)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.008698264  # (dB/km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu676.gamma0_exact
ITU-Rpy Function f (GHz) P (hPA) rho (g/cm3) T (K) ITU Validation (dB/km) ITU-Rpy Result (dB/km) Absolute Error Relative Error
models.itu676.gamma0_exact 12.0 1013.25 7.5 288.15 0.008698 0.008698 -6.88e-11 -0.000
models.itu676.gamma0_exact 20.0 1013.25 7.5 288.15 0.011884 0.011884 -4.78e-10 -0.000
models.itu676.gamma0_exact 60.0 1013.25 7.5 288.15 14.623475 14.623475 3.51e-09 0.000
models.itu676.gamma0_exact 90.0 1013.25 7.5 288.15 0.038870 0.038870 -7.24e-11 -0.000
models.itu676.gamma0_exact 130.0 1013.25 7.5 288.15 0.041509 0.041509 4.00e-10 0.000
models.itu676.gamma0_exact 1.0 1013.25 7.5 288.15 0.005389 0.005389 -1.68e-10 -0.000
models.itu676.gamma0_exact 2.0 1013.25 7.5 288.15 0.006716 0.006716 -4.74e-10 -0.000
models.itu676.gamma0_exact 3.0 1013.25 7.5 288.15 0.007076 0.007076 -1.33e-10 -0.000
models.itu676.gamma0_exact 4.0 1013.25 7.5 288.15 0.007259 0.007259 -2.78e-10 -0.000
models.itu676.gamma0_exact 5.0 1013.25 7.5 288.15 0.007400 0.007400 -2.56e-10 -0.000
models.itu676.gamma0_exact 6.0 1013.25 7.5 288.15 0.007537 0.007537 -8.29e-11 -0.000
models.itu676.gamma0_exact 7.0 1013.25 7.5 288.15 0.007683 0.007683 -1.65e-10 -0.000
models.itu676.gamma0_exact 8.0 1013.25 7.5 288.15 0.007844 0.007844 -2.52e-10 -0.000
models.itu676.gamma0_exact 9.0 1013.25 7.5 288.15 0.008023 0.008023 -4.46e-10 -0.000
models.itu676.gamma0_exact 10.0 1013.25 7.5 288.15 0.008224 0.008224 2.97e-10 0.000
models.itu676.gamma0_exact 11.0 1013.25 7.5 288.15 0.008449 0.008449 -3.94e-10 -0.000
models.itu676.gamma0_exact 12.0 1013.25 7.5 288.15 0.008698 0.008698 -6.88e-11 -0.000
models.itu676.gamma0_exact 13.0 1013.25 7.5 288.15 0.008975 0.008975 1.24e-10 0.000
models.itu676.gamma0_exact 14.0 1013.25 7.5 288.15 0.009281 0.009281 3.96e-10 0.000
models.itu676.gamma0_exact 15.0 1013.25 7.5 288.15 0.009619 0.009619 -3.01e-10 -0.000
models.itu676.gamma0_exact 16.0 1013.25 7.5 288.15 0.009991 0.009991 -5.30e-11 -0.000
models.itu676.gamma0_exact 17.0 1013.25 7.5 288.15 0.010400 0.010400 3.53e-10 0.000
models.itu676.gamma0_exact 18.0 1013.25 7.5 288.15 0.010849 0.010849 -3.41e-10 -0.000
models.itu676.gamma0_exact 19.0 1013.25 7.5 288.15 0.011342 0.011342 -4.01e-10 -0.000
models.itu676.gamma0_exact 20.0 1013.25 7.5 288.15 0.011884 0.011884 -4.78e-10 -0.000
models.itu676.gamma0_exact 21.0 1013.25 7.5 288.15 0.012478 0.012478 1.33e-10 0.000
models.itu676.gamma0_exact 22.0 1013.25 7.5 288.15 0.013130 0.013130 3.46e-11 0.000
models.itu676.gamma0_exact 23.0 1013.25 7.5 288.15 0.013847 0.013847 1.44e-10 0.000
models.itu676.gamma0_exact 24.0 1013.25 7.5 288.15 0.014636 0.014636 1.79e-10 0.000
models.itu676.gamma0_exact 25.0 1013.25 7.5 288.15 0.015505 0.015505 1.77e-10 0.000
models.itu676.gamma0_exact 26.0 1013.25 7.5 288.15 0.016463 0.016463 3.86e-10 0.000
models.itu676.gamma0_exact 27.0 1013.25 7.5 288.15 0.017523 0.017523 -4.01e-10 -0.000
models.itu676.gamma0_exact 28.0 1013.25 7.5 288.15 0.018696 0.018696 4.76e-11 0.000
models.itu676.gamma0_exact 29.0 1013.25 7.5 288.15 0.019999 0.019999 -1.10e-10 -0.000
models.itu676.gamma0_exact 30.0 1013.25 7.5 288.15 0.021450 0.021450 -2.40e-10 -0.000
models.itu676.gamma0_exact 31.0 1013.25 7.5 288.15 0.023069 0.023069 1.71e-10 0.000
models.itu676.gamma0_exact 32.0 1013.25 7.5 288.15 0.024884 0.024884 -2.24e-10 -0.000
models.itu676.gamma0_exact 33.0 1013.25 7.5 288.15 0.026925 0.026925 3.04e-10 0.000
models.itu676.gamma0_exact 34.0 1013.25 7.5 288.15 0.029229 0.029229 7.06e-11 0.000
models.itu676.gamma0_exact 35.0 1013.25 7.5 288.15 0.031843 0.031843 1.36e-10 0.000
models.itu676.gamma0_exact 36.0 1013.25 7.5 288.15 0.034823 0.034823 1.43e-11 0.000
models.itu676.gamma0_exact 37.0 1013.25 7.5 288.15 0.038239 0.038239 -2.90e-10 -0.000
models.itu676.gamma0_exact 38.0 1013.25 7.5 288.15 0.042180 0.042180 -4.91e-10 -0.000
models.itu676.gamma0_exact 39.0 1013.25 7.5 288.15 0.046758 0.046758 4.58e-11 0.000
models.itu676.gamma0_exact 40.0 1013.25 7.5 288.15 0.052117 0.052117 6.41e-11 0.000
models.itu676.gamma0_exact 41.0 1013.25 7.5 288.15 0.058445 0.058445 -1.02e-10 -0.000
models.itu676.gamma0_exact 42.0 1013.25 7.5 288.15 0.065994 0.065994 -1.75e-10 -0.000
models.itu676.gamma0_exact 43.0 1013.25 7.5 288.15 0.075103 0.075103 -4.57e-10 -0.000
models.itu676.gamma0_exact 44.0 1013.25 7.5 288.15 0.086242 0.086242 5.34e-11 0.000
models.itu676.gamma0_exact 45.0 1013.25 7.5 288.15 0.100081 0.100081 -1.54e-10 -0.000
models.itu676.gamma0_exact 46.0 1013.25 7.5 288.15 0.117605 0.117605 2.27e-10 0.000
models.itu676.gamma0_exact 47.0 1013.25 7.5 288.15 0.140330 0.140330 -3.76e-10 -0.000
models.itu676.gamma0_exact 48.0 1013.25 7.5 288.15 0.170720 0.170720 1.56e-10 0.000
models.itu676.gamma0_exact 49.0 1013.25 7.5 288.15 0.213175 0.213175 1.36e-11 0.000
models.itu676.gamma0_exact 50.0 1013.25 7.5 288.15 0.277269 0.277269 4.69e-10 0.000
models.itu676.gamma0_exact 51.0 1013.25 7.5 288.15 0.389671 0.389671 -7.01e-11 -0.000
models.itu676.gamma0_exact 52.0 1013.25 7.5 288.15 0.618430 0.618430 3.45e-10 0.000
models.itu676.gamma0_exact 53.0 1013.25 7.5 288.15 1.126612 1.126612 1.46e-11 0.000
models.itu676.gamma0_exact 54.0 1013.25 7.5 288.15 2.211542 2.211542 -3.72e-10 -0.000
models.itu676.gamma0_exact 55.0 1013.25 7.5 288.15 4.193282 4.193282 6.19e-12 0.000
models.itu676.gamma0_exact 56.0 1013.25 7.5 288.15 7.055044 7.055044 1.49e-10 0.000
models.itu676.gamma0_exact 57.0 1013.25 7.5 288.15 10.065238 10.065238 -2.14e-09 -0.000
models.itu676.gamma0_exact 58.0 1013.25 7.5 288.15 12.353147 12.353147 -1.29e-09 -0.000
models.itu676.gamma0_exact 59.0 1013.25 7.5 288.15 13.635296 13.635296 -4.04e-09 -0.000
models.itu676.gamma0_exact 60.0 1013.25 7.5 288.15 14.623475 14.623475 3.51e-09 0.000
models.itu676.gamma0_exact 61.0 1013.25 7.5 288.15 15.007159 15.007159 4.00e-09 0.000
models.itu676.gamma0_exact 62.0 1013.25 7.5 288.15 13.996211 13.996211 -2.27e-09 -0.000
models.itu676.gamma0_exact 63.0 1013.25 7.5 288.15 10.831088 10.831088 -1.43e-09 -0.000
models.itu676.gamma0_exact 64.0 1013.25 7.5 288.15 6.844589 6.844589 -4.91e-10 -0.000
models.itu676.gamma0_exact 65.0 1013.25 7.5 288.15 3.808804 3.808804 -3.44e-10 -0.000
models.itu676.gamma0_exact 66.0 1013.25 7.5 288.15 1.966618 1.966618 2.29e-10 0.000
models.itu676.gamma0_exact 67.0 1013.25 7.5 288.15 1.033389 1.033389 -6.65e-11 -0.000
models.itu676.gamma0_exact 68.0 1013.25 7.5 288.15 0.605466 0.605466 4.26e-10 0.000
models.itu676.gamma0_exact 69.0 1013.25 7.5 288.15 0.406986 0.406986 -1.98e-10 -0.000
models.itu676.gamma0_exact 70.0 1013.25 7.5 288.15 0.304105 0.304105 -1.47e-10 -0.000
models.itu676.gamma0_exact 71.0 1013.25 7.5 288.15 0.241601 0.241601 -1.64e-11 -0.000
models.itu676.gamma0_exact 72.0 1013.25 7.5 288.15 0.198532 0.198532 3.84e-10 0.000
models.itu676.gamma0_exact 73.0 1013.25 7.5 288.15 0.167046 0.167046 3.21e-10 0.000
models.itu676.gamma0_exact 74.0 1013.25 7.5 288.15 0.143142 0.143142 -4.86e-10 -0.000
models.itu676.gamma0_exact 75.0 1013.25 7.5 288.15 0.124485 0.124485 4.08e-12 0.000
models.itu676.gamma0_exact 76.0 1013.25 7.5 288.15 0.109604 0.109604 4.89e-10 0.000
models.itu676.gamma0_exact 77.0 1013.25 7.5 288.15 0.097526 0.097526 3.75e-10 0.000
models.itu676.gamma0_exact 78.0 1013.25 7.5 288.15 0.087579 0.087579 -4.72e-10 -0.000
models.itu676.gamma0_exact 79.0 1013.25 7.5 288.15 0.079289 0.079289 -3.24e-10 -0.000
models.itu676.gamma0_exact 80.0 1013.25 7.5 288.15 0.072307 0.072307 -3.27e-10 -0.000
models.itu676.gamma0_exact 81.0 1013.25 7.5 288.15 0.066378 0.066378 -3.25e-10 -0.000
models.itu676.gamma0_exact 82.0 1013.25 7.5 288.15 0.061305 0.061305 3.09e-10 0.000
models.itu676.gamma0_exact 83.0 1013.25 7.5 288.15 0.056939 0.056939 -1.84e-10 -0.000
models.itu676.gamma0_exact 84.0 1013.25 7.5 288.15 0.053163 0.053163 -1.40e-10 -0.000
models.itu676.gamma0_exact 85.0 1013.25 7.5 288.15 0.049886 0.049886 3.78e-10 0.000
models.itu676.gamma0_exact 86.0 1013.25 7.5 288.15 0.047033 0.047033 3.41e-10 0.000
models.itu676.gamma0_exact 87.0 1013.25 7.5 288.15 0.044547 0.044547 2.33e-10 0.000
models.itu676.gamma0_exact 88.0 1013.25 7.5 288.15 0.042382 0.042382 -4.06e-10 -0.000
models.itu676.gamma0_exact 89.0 1013.25 7.5 288.15 0.040500 0.040500 3.08e-10 0.000
models.itu676.gamma0_exact 90.0 1013.25 7.5 288.15 0.038870 0.038870 -7.24e-11 -0.000
models.itu676.gamma0_exact 91.0 1013.25 7.5 288.15 0.037469 0.037469 2.13e-10 0.000
models.itu676.gamma0_exact 92.0 1013.25 7.5 288.15 0.036279 0.036279 -3.94e-10 -0.000
models.itu676.gamma0_exact 93.0 1013.25 7.5 288.15 0.035286 0.035286 4.99e-11 0.000
models.itu676.gamma0_exact 94.0 1013.25 7.5 288.15 0.034481 0.034481 -5.00e-11 -0.000
models.itu676.gamma0_exact 95.0 1013.25 7.5 288.15 0.033858 0.033858 4.01e-10 0.000
models.itu676.gamma0_exact 96.0 1013.25 7.5 288.15 0.033418 0.033418 1.96e-10 0.000
models.itu676.gamma0_exact 97.0 1013.25 7.5 288.15 0.033163 0.033163 -1.08e-12 -0.000
models.itu676.gamma0_exact 98.0 1013.25 7.5 288.15 0.033102 0.033102 -3.81e-10 -0.000
models.itu676.gamma0_exact 99.0 1013.25 7.5 288.15 0.033249 0.033249 -1.05e-10 -0.000
models.itu676.gamma0_exact 100.0 1013.25 7.5 288.15 0.033625 0.033625 -7.81e-11 -0.000
models.itu676.gamma0_exact 101.0 1013.25 7.5 288.15 0.034262 0.034262 -2.89e-10 -0.000
models.itu676.gamma0_exact 102.0 1013.25 7.5 288.15 0.035201 0.035201 -4.37e-10 -0.000
models.itu676.gamma0_exact 103.0 1013.25 7.5 288.15 0.036499 0.036499 -2.76e-10 -0.000
models.itu676.gamma0_exact 104.0 1013.25 7.5 288.15 0.038238 0.038238 -4.76e-11 -0.000
models.itu676.gamma0_exact 105.0 1013.25 7.5 288.15 0.040527 0.040527 -3.01e-10 -0.000
models.itu676.gamma0_exact 106.0 1013.25 7.5 288.15 0.043524 0.043524 2.19e-10 0.000
models.itu676.gamma0_exact 107.0 1013.25 7.5 288.15 0.047453 0.047453 -9.53e-11 -0.000
models.itu676.gamma0_exact 108.0 1013.25 7.5 288.15 0.052644 0.052644 9.67e-11 0.000
models.itu676.gamma0_exact 109.0 1013.25 7.5 288.15 0.059596 0.059596 4.41e-10 0.000
models.itu676.gamma0_exact 110.0 1013.25 7.5 288.15 0.069088 0.069088 -2.25e-10 -0.000
models.itu676.gamma0_exact 111.0 1013.25 7.5 288.15 0.082387 0.082387 -2.34e-10 -0.000
models.itu676.gamma0_exact 112.0 1013.25 7.5 288.15 0.101655 0.101655 -2.43e-10 -0.000
models.itu676.gamma0_exact 113.0 1013.25 7.5 288.15 0.130787 0.130787 -9.19e-12 -0.000
models.itu676.gamma0_exact 114.0 1013.25 7.5 288.15 0.177281 0.177281 -2.16e-10 -0.000
models.itu676.gamma0_exact 115.0 1013.25 7.5 288.15 0.256608 0.256608 1.28e-10 0.000
models.itu676.gamma0_exact 116.0 1013.25 7.5 288.15 0.402454 0.402454 -1.58e-10 -0.000
models.itu676.gamma0_exact 117.0 1013.25 7.5 288.15 0.683016 0.683016 3.01e-10 0.000
models.itu676.gamma0_exact 118.0 1013.25 7.5 288.15 1.134866 1.134866 1.29e-10 0.000
models.itu676.gamma0_exact 119.0 1013.25 7.5 288.15 1.306379 1.306379 2.15e-10 0.000
models.itu676.gamma0_exact 120.0 1013.25 7.5 288.15 0.886109 0.886109 5.60e-12 0.000
models.itu676.gamma0_exact 121.0 1013.25 7.5 288.15 0.509172 0.509172 3.69e-10 0.000
models.itu676.gamma0_exact 122.0 1013.25 7.5 288.15 0.307769 0.307769 -3.83e-10 -0.000
models.itu676.gamma0_exact 123.0 1013.25 7.5 288.15 0.202101 0.202101 -2.01e-10 -0.000
models.itu676.gamma0_exact 124.0 1013.25 7.5 288.15 0.142570 0.142570 -5.33e-11 -0.000
models.itu676.gamma0_exact 125.0 1013.25 7.5 288.15 0.106446 0.106446 -3.96e-10 -0.000
models.itu676.gamma0_exact 126.0 1013.25 7.5 288.15 0.083104 0.083104 2.67e-10 0.000
models.itu676.gamma0_exact 127.0 1013.25 7.5 288.15 0.067232 0.067232 -4.38e-10 -0.000
models.itu676.gamma0_exact 128.0 1013.25 7.5 288.15 0.055982 0.055982 -2.29e-10 -0.000
models.itu676.gamma0_exact 129.0 1013.25 7.5 288.15 0.047732 0.047732 -4.15e-10 -0.000
models.itu676.gamma0_exact 130.0 1013.25 7.5 288.15 0.041509 0.041509 4.00e-10 0.000
models.itu676.gamma0_exact 131.0 1013.25 7.5 288.15 0.036702 0.036702 -2.17e-11 -0.000
models.itu676.gamma0_exact 132.0 1013.25 7.5 288.15 0.032912 0.032912 -6.43e-11 -0.000
models.itu676.gamma0_exact 133.0 1013.25 7.5 288.15 0.029873 0.029873 2.67e-10 0.000
models.itu676.gamma0_exact 134.0 1013.25 7.5 288.15 0.027400 0.027400 1.83e-10 0.000
models.itu676.gamma0_exact 135.0 1013.25 7.5 288.15 0.025359 0.025359 -1.72e-10 -0.000
models.itu676.gamma0_exact 136.0 1013.25 7.5 288.15 0.023658 0.023658 -1.46e-10 -0.000
models.itu676.gamma0_exact 137.0 1013.25 7.5 288.15 0.022224 0.022224 3.75e-10 0.000
models.itu676.gamma0_exact 138.0 1013.25 7.5 288.15 0.021005 0.021005 8.12e-11 0.000
models.itu676.gamma0_exact 139.0 1013.25 7.5 288.15 0.019961 0.019961 -4.96e-10 -0.000
models.itu676.gamma0_exact 140.0 1013.25 7.5 288.15 0.019060 0.019060 2.75e-10 0.000
models.itu676.gamma0_exact 141.0 1013.25 7.5 288.15 0.018278 0.018278 1.62e-10 0.000
models.itu676.gamma0_exact 142.0 1013.25 7.5 288.15 0.017596 0.017596 1.66e-10 0.000
models.itu676.gamma0_exact 143.0 1013.25 7.5 288.15 0.016998 0.016998 -3.73e-10 -0.000
models.itu676.gamma0_exact 144.0 1013.25 7.5 288.15 0.016471 0.016471 -3.81e-10 -0.000
models.itu676.gamma0_exact 145.0 1013.25 7.5 288.15 0.016006 0.016006 -4.46e-10 -0.000
models.itu676.gamma0_exact 146.0 1013.25 7.5 288.15 0.015593 0.015593 3.39e-10 0.000
models.itu676.gamma0_exact 147.0 1013.25 7.5 288.15 0.015226 0.015226 2.54e-10 0.000
models.itu676.gamma0_exact 148.0 1013.25 7.5 288.15 0.014900 0.014900 2.64e-10 0.000
models.itu676.gamma0_exact 149.0 1013.25 7.5 288.15 0.014608 0.014608 2.97e-10 0.000
models.itu676.gamma0_exact 150.0 1013.25 7.5 288.15 0.014347 0.014347 -2.74e-10 -0.000
models.itu676.gamma0_exact 151.0 1013.25 7.5 288.15 0.014113 0.014113 -1.57e-10 -0.000
models.itu676.gamma0_exact 152.0 1013.25 7.5 288.15 0.013904 0.013904 5.37e-11 0.000
models.itu676.gamma0_exact 153.0 1013.25 7.5 288.15 0.013717 0.013717 2.29e-10 0.000
models.itu676.gamma0_exact 154.0 1013.25 7.5 288.15 0.013550 0.013550 7.46e-11 0.000
models.itu676.gamma0_exact 155.0 1013.25 7.5 288.15 0.013400 0.013400 1.89e-10 0.000
models.itu676.gamma0_exact 156.0 1013.25 7.5 288.15 0.013266 0.013266 -3.84e-10 -0.000
models.itu676.gamma0_exact 157.0 1013.25 7.5 288.15 0.013146 0.013146 3.91e-11 0.000
models.itu676.gamma0_exact 158.0 1013.25 7.5 288.15 0.013040 0.013040 3.00e-10 0.000
models.itu676.gamma0_exact 159.0 1013.25 7.5 288.15 0.012946 0.012946 -4.64e-10 -0.000
models.itu676.gamma0_exact 160.0 1013.25 7.5 288.15 0.012863 0.012863 -3.19e-11 -0.000
models.itu676.gamma0_exact 161.0 1013.25 7.5 288.15 0.012790 0.012790 1.45e-10 0.000
models.itu676.gamma0_exact 162.0 1013.25 7.5 288.15 0.012726 0.012726 2.91e-10 0.000
models.itu676.gamma0_exact 163.0 1013.25 7.5 288.15 0.012671 0.012671 2.71e-10 0.000
models.itu676.gamma0_exact 164.0 1013.25 7.5 288.15 0.012624 0.012624 -4.16e-10 -0.000
models.itu676.gamma0_exact 165.0 1013.25 7.5 288.15 0.012585 0.012585 -2.65e-10 -0.000
models.itu676.gamma0_exact 166.0 1013.25 7.5 288.15 0.012552 0.012552 2.31e-10 0.000
models.itu676.gamma0_exact 167.0 1013.25 7.5 288.15 0.012526 0.012526 4.50e-10 0.000
models.itu676.gamma0_exact 168.0 1013.25 7.5 288.15 0.012506 0.012506 -4.50e-10 -0.000
models.itu676.gamma0_exact 169.0 1013.25 7.5 288.15 0.012492 0.012492 -4.30e-10 -0.000
models.itu676.gamma0_exact 170.0 1013.25 7.5 288.15 0.012483 0.012483 -1.51e-10 -0.000
models.itu676.gamma0_exact 171.0 1013.25 7.5 288.15 0.012479 0.012479 -1.31e-10 -0.000
models.itu676.gamma0_exact 172.0 1013.25 7.5 288.15 0.012479 0.012479 -4.00e-10 -0.000
models.itu676.gamma0_exact 173.0 1013.25 7.5 288.15 0.012484 0.012484 4.23e-10 0.000
models.itu676.gamma0_exact 174.0 1013.25 7.5 288.15 0.012493 0.012493 -3.06e-10 -0.000
models.itu676.gamma0_exact 175.0 1013.25 7.5 288.15 0.012507 0.012507 -5.33e-12 -0.000
models.itu676.gamma0_exact 176.0 1013.25 7.5 288.15 0.012524 0.012524 1.12e-10 0.000
models.itu676.gamma0_exact 177.0 1013.25 7.5 288.15 0.012544 0.012544 -2.07e-10 -0.000
models.itu676.gamma0_exact 178.0 1013.25 7.5 288.15 0.012568 0.012568 2.89e-10 0.000
models.itu676.gamma0_exact 179.0 1013.25 7.5 288.15 0.012595 0.012595 -2.68e-10 -0.000
models.itu676.gamma0_exact 180.0 1013.25 7.5 288.15 0.012626 0.012626 3.54e-10 0.000
models.itu676.gamma0_exact 181.0 1013.25 7.5 288.15 0.012659 0.012659 -4.23e-10 -0.000
models.itu676.gamma0_exact 182.0 1013.25 7.5 288.15 0.012695 0.012695 -2.21e-11 -0.000
models.itu676.gamma0_exact 183.0 1013.25 7.5 288.15 0.012734 0.012734 1.64e-10 0.000
models.itu676.gamma0_exact 184.0 1013.25 7.5 288.15 0.012775 0.012775 -4.54e-10 -0.000
models.itu676.gamma0_exact 185.0 1013.25 7.5 288.15 0.012819 0.012819 3.75e-11 0.000
models.itu676.gamma0_exact 186.0 1013.25 7.5 288.15 0.012866 0.012866 -3.17e-10 -0.000
models.itu676.gamma0_exact 187.0 1013.25 7.5 288.15 0.012914 0.012914 2.26e-10 0.000
models.itu676.gamma0_exact 188.0 1013.25 7.5 288.15 0.012965 0.012965 -3.86e-10 -0.000
models.itu676.gamma0_exact 189.0 1013.25 7.5 288.15 0.013018 0.013018 4.68e-10 0.000
models.itu676.gamma0_exact 190.0 1013.25 7.5 288.15 0.013073 0.013073 4.93e-10 0.000
models.itu676.gamma0_exact 191.0 1013.25 7.5 288.15 0.013130 0.013130 -1.38e-10 -0.000
models.itu676.gamma0_exact 192.0 1013.25 7.5 288.15 0.013189 0.013189 -4.40e-10 -0.000
models.itu676.gamma0_exact 193.0 1013.25 7.5 288.15 0.013250 0.013250 -3.07e-10 -0.000
models.itu676.gamma0_exact 194.0 1013.25 7.5 288.15 0.013312 0.013312 -2.21e-10 -0.000
models.itu676.gamma0_exact 195.0 1013.25 7.5 288.15 0.013377 0.013377 2.33e-12 0.000
models.itu676.gamma0_exact 196.0 1013.25 7.5 288.15 0.013443 0.013443 4.57e-10 0.000
models.itu676.gamma0_exact 197.0 1013.25 7.5 288.15 0.013511 0.013511 3.61e-10 0.000
models.itu676.gamma0_exact 198.0 1013.25 7.5 288.15 0.013580 0.013580 2.54e-10 0.000
models.itu676.gamma0_exact 199.0 1013.25 7.5 288.15 0.013651 0.013651 1.83e-10 0.000
models.itu676.gamma0_exact 200.0 1013.25 7.5 288.15 0.013724 0.013724 -1.33e-10 -0.000
models.itu676.gamma0_exact 201.0 1013.25 7.5 288.15 0.013798 0.013798 -1.45e-10 -0.000
models.itu676.gamma0_exact 202.0 1013.25 7.5 288.15 0.013873 0.013873 -3.38e-10 -0.000
models.itu676.gamma0_exact 203.0 1013.25 7.5 288.15 0.013950 0.013950 -9.59e-11 -0.000
models.itu676.gamma0_exact 204.0 1013.25 7.5 288.15 0.014028 0.014028 4.18e-10 0.000
models.itu676.gamma0_exact 205.0 1013.25 7.5 288.15 0.014107 0.014107 3.71e-10 0.000
models.itu676.gamma0_exact 206.0 1013.25 7.5 288.15 0.014188 0.014188 3.64e-10 0.000
models.itu676.gamma0_exact 207.0 1013.25 7.5 288.15 0.014270 0.014270 -4.75e-10 -0.000
models.itu676.gamma0_exact 208.0 1013.25 7.5 288.15 0.014354 0.014354 -3.98e-10 -0.000
models.itu676.gamma0_exact 209.0 1013.25 7.5 288.15 0.014438 0.014438 3.90e-11 0.000
models.itu676.gamma0_exact 210.0 1013.25 7.5 288.15 0.014524 0.014524 5.38e-11 0.000
models.itu676.gamma0_exact 211.0 1013.25 7.5 288.15 0.014611 0.014611 -2.91e-10 -0.000
models.itu676.gamma0_exact 212.0 1013.25 7.5 288.15 0.014699 0.014699 -2.47e-11 -0.000
models.itu676.gamma0_exact 213.0 1013.25 7.5 288.15 0.014789 0.014789 -2.06e-10 -0.000
models.itu676.gamma0_exact 214.0 1013.25 7.5 288.15 0.014879 0.014879 1.33e-10 0.000
models.itu676.gamma0_exact 215.0 1013.25 7.5 288.15 0.014970 0.014970 3.83e-11 0.000
models.itu676.gamma0_exact 216.0 1013.25 7.5 288.15 0.015063 0.015063 -3.17e-10 -0.000
models.itu676.gamma0_exact 217.0 1013.25 7.5 288.15 0.015157 0.015157 4.16e-10 0.000
models.itu676.gamma0_exact 218.0 1013.25 7.5 288.15 0.015251 0.015251 -2.00e-10 -0.000
models.itu676.gamma0_exact 219.0 1013.25 7.5 288.15 0.015347 0.015347 -3.46e-10 -0.000
models.itu676.gamma0_exact 220.0 1013.25 7.5 288.15 0.015444 0.015444 9.23e-11 0.000
models.itu676.gamma0_exact 221.0 1013.25 7.5 288.15 0.015541 0.015541 -4.45e-10 -0.000
models.itu676.gamma0_exact 222.0 1013.25 7.5 288.15 0.015640 0.015640 -1.57e-10 -0.000
models.itu676.gamma0_exact 223.0 1013.25 7.5 288.15 0.015740 0.015740 1.49e-10 0.000
models.itu676.gamma0_exact 224.0 1013.25 7.5 288.15 0.015840 0.015840 8.53e-11 0.000
models.itu676.gamma0_exact 225.0 1013.25 7.5 288.15 0.015942 0.015942 -2.90e-10 -0.000
models.itu676.gamma0_exact 226.0 1013.25 7.5 288.15 0.016044 0.016044 -4.48e-10 -0.000
models.itu676.gamma0_exact 227.0 1013.25 7.5 288.15 0.016147 0.016147 -3.64e-10 -0.000
models.itu676.gamma0_exact 228.0 1013.25 7.5 288.15 0.016252 0.016252 -4.97e-10 -0.000
models.itu676.gamma0_exact 229.0 1013.25 7.5 288.15 0.016357 0.016357 2.32e-10 0.000
models.itu676.gamma0_exact 230.0 1013.25 7.5 288.15 0.016463 0.016463 4.57e-10 0.000
models.itu676.gamma0_exact 231.0 1013.25 7.5 288.15 0.016570 0.016570 3.89e-10 0.000
models.itu676.gamma0_exact 232.0 1013.25 7.5 288.15 0.016677 0.016677 -1.70e-10 -0.000
models.itu676.gamma0_exact 233.0 1013.25 7.5 288.15 0.016786 0.016786 1.89e-10 0.000
models.itu676.gamma0_exact 234.0 1013.25 7.5 288.15 0.016895 0.016895 4.99e-10 0.000
models.itu676.gamma0_exact 235.0 1013.25 7.5 288.15 0.017006 0.017006 4.30e-10 0.000
models.itu676.gamma0_exact 236.0 1013.25 7.5 288.15 0.017117 0.017117 3.00e-10 0.000
models.itu676.gamma0_exact 237.0 1013.25 7.5 288.15 0.017228 0.017228 9.10e-11 0.000
models.itu676.gamma0_exact 238.0 1013.25 7.5 288.15 0.017341 0.017341 4.59e-10 0.000
models.itu676.gamma0_exact 239.0 1013.25 7.5 288.15 0.017455 0.017455 -2.57e-10 -0.000
models.itu676.gamma0_exact 240.0 1013.25 7.5 288.15 0.017569 0.017569 -2.29e-11 -0.000
models.itu676.gamma0_exact 241.0 1013.25 7.5 288.15 0.017684 0.017684 -1.00e-10 -0.000
models.itu676.gamma0_exact 242.0 1013.25 7.5 288.15 0.017800 0.017800 -3.80e-11 -0.000
models.itu676.gamma0_exact 243.0 1013.25 7.5 288.15 0.017916 0.017916 3.34e-10 0.000
models.itu676.gamma0_exact 244.0 1013.25 7.5 288.15 0.018034 0.018034 -8.39e-11 -0.000
models.itu676.gamma0_exact 245.0 1013.25 7.5 288.15 0.018152 0.018152 3.42e-10 0.000
models.itu676.gamma0_exact 246.0 1013.25 7.5 288.15 0.018271 0.018271 -1.20e-11 -0.000
models.itu676.gamma0_exact 247.0 1013.25 7.5 288.15 0.018390 0.018390 -2.32e-11 -0.000
models.itu676.gamma0_exact 248.0 1013.25 7.5 288.15 0.018511 0.018511 1.84e-10 0.000
models.itu676.gamma0_exact 249.0 1013.25 7.5 288.15 0.018632 0.018632 2.44e-10 0.000
models.itu676.gamma0_exact 250.0 1013.25 7.5 288.15 0.018754 0.018754 -4.50e-10 -0.000
models.itu676.gamma0_exact 251.0 1013.25 7.5 288.15 0.018876 0.018876 2.64e-10 0.000
models.itu676.gamma0_exact 252.0 1013.25 7.5 288.15 0.019000 0.019000 3.15e-10 0.000
models.itu676.gamma0_exact 253.0 1013.25 7.5 288.15 0.019124 0.019124 4.06e-10 0.000
models.itu676.gamma0_exact 254.0 1013.25 7.5 288.15 0.019249 0.019249 1.31e-11 0.000
models.itu676.gamma0_exact 255.0 1013.25 7.5 288.15 0.019374 0.019374 3.89e-10 0.000
models.itu676.gamma0_exact 256.0 1013.25 7.5 288.15 0.019500 0.019500 -4.33e-10 -0.000
models.itu676.gamma0_exact 257.0 1013.25 7.5 288.15 0.019627 0.019627 3.58e-10 0.000
models.itu676.gamma0_exact 258.0 1013.25 7.5 288.15 0.019755 0.019755 3.53e-10 0.000
models.itu676.gamma0_exact 259.0 1013.25 7.5 288.15 0.019883 0.019883 -7.52e-11 -0.000
models.itu676.gamma0_exact 260.0 1013.25 7.5 288.15 0.020012 0.020012 2.27e-10 0.000
models.itu676.gamma0_exact 261.0 1013.25 7.5 288.15 0.020142 0.020142 1.93e-10 0.000
models.itu676.gamma0_exact 262.0 1013.25 7.5 288.15 0.020273 0.020273 -4.65e-10 -0.000
models.itu676.gamma0_exact 263.0 1013.25 7.5 288.15 0.020404 0.020404 -2.57e-10 -0.000
models.itu676.gamma0_exact 264.0 1013.25 7.5 288.15 0.020536 0.020536 8.07e-11 0.000
models.itu676.gamma0_exact 265.0 1013.25 7.5 288.15 0.020668 0.020668 -4.12e-10 -0.000
models.itu676.gamma0_exact 266.0 1013.25 7.5 288.15 0.020801 0.020801 7.32e-11 0.000
models.itu676.gamma0_exact 267.0 1013.25 7.5 288.15 0.020935 0.020935 1.11e-10 0.000
models.itu676.gamma0_exact 268.0 1013.25 7.5 288.15 0.021070 0.021070 3.87e-11 0.000
models.itu676.gamma0_exact 269.0 1013.25 7.5 288.15 0.021205 0.021205 -4.82e-11 -0.000
models.itu676.gamma0_exact 270.0 1013.25 7.5 288.15 0.021341 0.021341 -3.02e-10 -0.000
models.itu676.gamma0_exact 271.0 1013.25 7.5 288.15 0.021478 0.021478 -1.28e-10 -0.000
models.itu676.gamma0_exact 272.0 1013.25 7.5 288.15 0.021615 0.021615 -1.93e-10 -0.000
models.itu676.gamma0_exact 273.0 1013.25 7.5 288.15 0.021754 0.021754 -4.28e-10 -0.000
models.itu676.gamma0_exact 274.0 1013.25 7.5 288.15 0.021892 0.021892 -4.17e-11 -0.000
models.itu676.gamma0_exact 275.0 1013.25 7.5 288.15 0.022032 0.022032 4.73e-10 0.000
models.itu676.gamma0_exact 276.0 1013.25 7.5 288.15 0.022172 0.022172 3.30e-10 0.000
models.itu676.gamma0_exact 277.0 1013.25 7.5 288.15 0.022313 0.022313 4.40e-10 0.000
models.itu676.gamma0_exact 278.0 1013.25 7.5 288.15 0.022455 0.022455 3.95e-10 0.000
models.itu676.gamma0_exact 279.0 1013.25 7.5 288.15 0.022597 0.022597 4.60e-10 0.000
models.itu676.gamma0_exact 280.0 1013.25 7.5 288.15 0.022740 0.022740 -4.44e-10 -0.000
models.itu676.gamma0_exact 281.0 1013.25 7.5 288.15 0.022884 0.022884 2.50e-10 0.000
models.itu676.gamma0_exact 282.0 1013.25 7.5 288.15 0.023028 0.023028 -2.69e-10 -0.000
models.itu676.gamma0_exact 283.0 1013.25 7.5 288.15 0.023174 0.023174 -2.01e-10 -0.000
models.itu676.gamma0_exact 284.0 1013.25 7.5 288.15 0.023319 0.023319 -1.58e-10 -0.000
models.itu676.gamma0_exact 285.0 1013.25 7.5 288.15 0.023466 0.023466 -1.83e-10 -0.000
models.itu676.gamma0_exact 286.0 1013.25 7.5 288.15 0.023614 0.023614 2.28e-10 0.000
models.itu676.gamma0_exact 287.0 1013.25 7.5 288.15 0.023762 0.023762 9.60e-11 0.000
models.itu676.gamma0_exact 288.0 1013.25 7.5 288.15 0.023911 0.023911 -5.99e-11 -0.000
models.itu676.gamma0_exact 289.0 1013.25 7.5 288.15 0.024060 0.024060 -2.58e-10 -0.000
models.itu676.gamma0_exact 290.0 1013.25 7.5 288.15 0.024211 0.024211 -8.18e-11 -0.000
models.itu676.gamma0_exact 291.0 1013.25 7.5 288.15 0.024362 0.024362 2.82e-10 0.000
models.itu676.gamma0_exact 292.0 1013.25 7.5 288.15 0.024514 0.024514 8.49e-12 0.000
models.itu676.gamma0_exact 293.0 1013.25 7.5 288.15 0.024667 0.024667 -4.07e-10 -0.000
models.itu676.gamma0_exact 294.0 1013.25 7.5 288.15 0.024820 0.024820 -1.94e-10 -0.000
models.itu676.gamma0_exact 295.0 1013.25 7.5 288.15 0.024975 0.024975 -3.58e-10 -0.000
models.itu676.gamma0_exact 296.0 1013.25 7.5 288.15 0.025130 0.025130 2.73e-10 0.000
models.itu676.gamma0_exact 297.0 1013.25 7.5 288.15 0.025286 0.025286 -2.06e-11 -0.000
models.itu676.gamma0_exact 298.0 1013.25 7.5 288.15 0.025443 0.025443 9.65e-11 0.000
models.itu676.gamma0_exact 299.0 1013.25 7.5 288.15 0.025601 0.025601 -6.27e-11 -0.000
models.itu676.gamma0_exact 300.0 1013.25 7.5 288.15 0.025760 0.025760 -2.82e-10 -0.000
models.itu676.gamma0_exact 301.0 1013.25 7.5 288.15 0.025919 0.025919 4.73e-10 0.000
models.itu676.gamma0_exact 302.0 1013.25 7.5 288.15 0.026080 0.026080 -4.02e-11 -0.000
models.itu676.gamma0_exact 303.0 1013.25 7.5 288.15 0.026241 0.026241 -4.41e-10 -0.000
models.itu676.gamma0_exact 304.0 1013.25 7.5 288.15 0.026403 0.026403 1.59e-10 0.000
models.itu676.gamma0_exact 305.0 1013.25 7.5 288.15 0.026567 0.026567 2.86e-11 0.000
models.itu676.gamma0_exact 306.0 1013.25 7.5 288.15 0.026731 0.026731 -3.21e-10 -0.000
models.itu676.gamma0_exact 307.0 1013.25 7.5 288.15 0.026897 0.026897 -2.89e-10 -0.000
models.itu676.gamma0_exact 308.0 1013.25 7.5 288.15 0.027063 0.027063 -3.60e-10 -0.000
models.itu676.gamma0_exact 309.0 1013.25 7.5 288.15 0.027231 0.027231 -2.96e-10 -0.000
models.itu676.gamma0_exact 310.0 1013.25 7.5 288.15 0.027399 0.027399 -3.46e-10 -0.000
models.itu676.gamma0_exact 311.0 1013.25 7.5 288.15 0.027569 0.027569 -4.87e-10 -0.000
models.itu676.gamma0_exact 312.0 1013.25 7.5 288.15 0.027740 0.027740 3.05e-10 0.000
models.itu676.gamma0_exact 313.0 1013.25 7.5 288.15 0.027913 0.027913 -2.39e-10 -0.000
models.itu676.gamma0_exact 314.0 1013.25 7.5 288.15 0.028086 0.028086 -2.38e-11 -0.000
models.itu676.gamma0_exact 315.0 1013.25 7.5 288.15 0.028261 0.028261 2.95e-11 0.000
models.itu676.gamma0_exact 316.0 1013.25 7.5 288.15 0.028437 0.028437 -4.45e-10 -0.000
models.itu676.gamma0_exact 317.0 1013.25 7.5 288.15 0.028615 0.028615 2.53e-10 0.000
models.itu676.gamma0_exact 318.0 1013.25 7.5 288.15 0.028795 0.028795 3.35e-10 0.000
models.itu676.gamma0_exact 319.0 1013.25 7.5 288.15 0.028975 0.028975 -1.08e-10 -0.000
models.itu676.gamma0_exact 320.0 1013.25 7.5 288.15 0.029158 0.029158 1.76e-10 0.000
models.itu676.gamma0_exact 321.0 1013.25 7.5 288.15 0.029342 0.029342 -2.26e-10 -0.000
models.itu676.gamma0_exact 322.0 1013.25 7.5 288.15 0.029528 0.029528 -3.42e-10 -0.000
models.itu676.gamma0_exact 323.0 1013.25 7.5 288.15 0.029716 0.029716 9.63e-11 0.000
models.itu676.gamma0_exact 324.0 1013.25 7.5 288.15 0.029907 0.029907 3.89e-10 0.000
models.itu676.gamma0_exact 325.0 1013.25 7.5 288.15 0.030099 0.030099 4.06e-10 0.000
models.itu676.gamma0_exact 326.0 1013.25 7.5 288.15 0.030294 0.030294 -1.14e-10 -0.000
models.itu676.gamma0_exact 327.0 1013.25 7.5 288.15 0.030491 0.030491 4.47e-10 0.000
models.itu676.gamma0_exact 328.0 1013.25 7.5 288.15 0.030691 0.030691 2.57e-10 0.000
models.itu676.gamma0_exact 329.0 1013.25 7.5 288.15 0.030893 0.030893 2.97e-10 0.000
models.itu676.gamma0_exact 330.0 1013.25 7.5 288.15 0.031099 0.031099 1.19e-10 0.000
models.itu676.gamma0_exact 331.0 1013.25 7.5 288.15 0.031308 0.031308 4.33e-12 0.000
models.itu676.gamma0_exact 332.0 1013.25 7.5 288.15 0.031521 0.031521 3.89e-10 0.000
models.itu676.gamma0_exact 333.0 1013.25 7.5 288.15 0.031738 0.031738 3.79e-10 0.000
models.itu676.gamma0_exact 334.0 1013.25 7.5 288.15 0.031958 0.031958 1.55e-10 0.000
models.itu676.gamma0_exact 335.0 1013.25 7.5 288.15 0.032184 0.032184 -1.20e-11 -0.000
models.itu676.gamma0_exact 336.0 1013.25 7.5 288.15 0.032415 0.032415 -4.58e-10 -0.000
models.itu676.gamma0_exact 337.0 1013.25 7.5 288.15 0.032652 0.032652 -6.69e-12 -0.000
models.itu676.gamma0_exact 338.0 1013.25 7.5 288.15 0.032895 0.032895 4.23e-10 0.000
models.itu676.gamma0_exact 339.0 1013.25 7.5 288.15 0.033145 0.033145 -2.88e-10 -0.000
models.itu676.gamma0_exact 340.0 1013.25 7.5 288.15 0.033403 0.033403 -3.78e-11 -0.000
models.itu676.gamma0_exact 341.0 1013.25 7.5 288.15 0.033670 0.033670 1.26e-10 0.000
models.itu676.gamma0_exact 342.0 1013.25 7.5 288.15 0.033948 0.033948 8.57e-11 0.000
models.itu676.gamma0_exact 343.0 1013.25 7.5 288.15 0.034237 0.034237 -2.13e-10 -0.000
models.itu676.gamma0_exact 344.0 1013.25 7.5 288.15 0.034540 0.034540 1.61e-10 0.000
models.itu676.gamma0_exact 345.0 1013.25 7.5 288.15 0.034859 0.034859 2.94e-10 0.000
models.itu676.gamma0_exact 346.0 1013.25 7.5 288.15 0.035196 0.035196 4.89e-10 0.000
models.itu676.gamma0_exact 347.0 1013.25 7.5 288.15 0.035555 0.035555 1.91e-10 0.000
models.itu676.gamma0_exact 348.0 1013.25 7.5 288.15 0.035939 0.035939 -2.64e-10 -0.000
models.itu676.gamma0_exact 349.0 1013.25 7.5 288.15 0.036354 0.036354 -8.97e-11 -0.000
models.itu676.gamma0_exact 350.0 1013.25 7.5 288.15 0.036806 0.036806 -5.05e-11 -0.000


Function gamma_exact

The table below contains the results of testing function gamma_exact. The test cases were extracted from spreadsheet ITURP676-12_gamma.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
f = 12.0  # (GHz)
P = 1013.25  # (hPA)
rho = 7.5  # (g/cm3)
T = 288.15  # (K)

# Make call to test-function gamma_exact
itur_val = itur.models.itu676.gamma_exact(f=f, P=P, rho=rho, T=T)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.018233652  # (dB/km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu676.gamma_exact
ITU-Rpy Function f (GHz) P (hPA) rho (g/cm3) T (K) ITU Validation (dB/km) ITU-Rpy Result (dB/km) Absolute Error Relative Error
models.itu676.gamma_exact 12.0 1013.25 7.5 288.15 0.018234 0.018234 -2.89e-10 -0.000
models.itu676.gamma_exact 20.0 1013.25 7.5 288.15 0.108931 0.108931 -2.93e-10 -0.000
models.itu676.gamma_exact 60.0 1013.25 7.5 288.15 14.778317 14.778317 2.88e-09 0.000
models.itu676.gamma_exact 90.0 1013.25 7.5 288.15 0.380843 0.380843 -4.95e-10 -0.000
models.itu676.gamma_exact 130.0 1013.25 7.5 288.15 0.793354 0.793354 -2.46e-10 -0.000
models.itu676.gamma_exact 1.0 1013.25 7.5 288.15 0.005440 0.005440 2.15e-10 0.000
models.itu676.gamma_exact 2.0 1013.25 7.5 288.15 0.006920 0.006920 1.47e-10 0.000
models.itu676.gamma_exact 3.0 1013.25 7.5 288.15 0.007539 0.007539 1.08e-11 0.000
models.itu676.gamma_exact 4.0 1013.25 7.5 288.15 0.008089 0.008089 -2.01e-10 -0.000
models.itu676.gamma_exact 5.0 1013.25 7.5 288.15 0.008714 0.008714 -1.77e-10 -0.000
models.itu676.gamma_exact 6.0 1013.25 7.5 288.15 0.009459 0.009459 1.13e-10 0.000
models.itu676.gamma_exact 7.0 1013.25 7.5 288.15 0.010351 0.010351 3.42e-10 0.000
models.itu676.gamma_exact 8.0 1013.25 7.5 288.15 0.011416 0.011416 -2.99e-10 -0.000
models.itu676.gamma_exact 9.0 1013.25 7.5 288.15 0.012684 0.012684 -1.82e-10 -0.000
models.itu676.gamma_exact 10.0 1013.25 7.5 288.15 0.014199 0.014199 5.18e-11 0.000
models.itu676.gamma_exact 11.0 1013.25 7.5 288.15 0.016019 0.016019 -1.24e-10 -0.000
models.itu676.gamma_exact 12.0 1013.25 7.5 288.15 0.018234 0.018234 -2.89e-10 -0.000
models.itu676.gamma_exact 13.0 1013.25 7.5 288.15 0.020980 0.020980 -1.02e-10 -0.000
models.itu676.gamma_exact 14.0 1013.25 7.5 288.15 0.024473 0.024473 -1.31e-10 -0.000
models.itu676.gamma_exact 15.0 1013.25 7.5 288.15 0.029058 0.029058 -5.96e-11 -0.000
models.itu676.gamma_exact 16.0 1013.25 7.5 288.15 0.035316 0.035316 -9.40e-11 -0.000
models.itu676.gamma_exact 17.0 1013.25 7.5 288.15 0.044234 0.044234 -8.23e-11 -0.000
models.itu676.gamma_exact 18.0 1013.25 7.5 288.15 0.057513 0.057513 1.20e-10 0.000
models.itu676.gamma_exact 19.0 1013.25 7.5 288.15 0.077918 0.077918 -1.87e-10 -0.000
models.itu676.gamma_exact 20.0 1013.25 7.5 288.15 0.108931 0.108931 -2.93e-10 -0.000
models.itu676.gamma_exact 21.0 1013.25 7.5 288.15 0.150432 0.150432 1.94e-10 0.000
models.itu676.gamma_exact 22.0 1013.25 7.5 288.15 0.187337 0.187337 -3.02e-10 -0.000
models.itu676.gamma_exact 23.0 1013.25 7.5 288.15 0.194289 0.194289 4.49e-11 0.000
models.itu676.gamma_exact 24.0 1013.25 7.5 288.15 0.173161 0.173161 -1.46e-10 -0.000
models.itu676.gamma_exact 25.0 1013.25 7.5 288.15 0.146235 0.146235 2.06e-10 0.000
models.itu676.gamma_exact 26.0 1013.25 7.5 288.15 0.125028 0.125028 1.32e-10 0.000
models.itu676.gamma_exact 27.0 1013.25 7.5 288.15 0.110735 0.110735 -2.58e-10 -0.000
models.itu676.gamma_exact 28.0 1013.25 7.5 288.15 0.101756 0.101756 -2.07e-10 -0.000
models.itu676.gamma_exact 29.0 1013.25 7.5 288.15 0.096494 0.096494 3.25e-10 0.000
models.itu676.gamma_exact 30.0 1013.25 7.5 288.15 0.093825 0.093825 -2.65e-10 -0.000
models.itu676.gamma_exact 31.0 1013.25 7.5 288.15 0.093020 0.093020 -1.86e-10 -0.000
models.itu676.gamma_exact 32.0 1013.25 7.5 288.15 0.093619 0.093619 -2.43e-10 -0.000
models.itu676.gamma_exact 33.0 1013.25 7.5 288.15 0.095332 0.095332 -4.62e-10 -0.000
models.itu676.gamma_exact 34.0 1013.25 7.5 288.15 0.097979 0.097979 -1.93e-10 -0.000
models.itu676.gamma_exact 35.0 1013.25 7.5 288.15 0.101457 0.101457 -4.89e-10 -0.000
models.itu676.gamma_exact 36.0 1013.25 7.5 288.15 0.105720 0.105720 4.54e-10 0.000
models.itu676.gamma_exact 37.0 1013.25 7.5 288.15 0.110762 0.110762 2.84e-10 0.000
models.itu676.gamma_exact 38.0 1013.25 7.5 288.15 0.116615 0.116615 1.65e-10 0.000
models.itu676.gamma_exact 39.0 1013.25 7.5 288.15 0.123352 0.123352 2.33e-10 0.000
models.itu676.gamma_exact 40.0 1013.25 7.5 288.15 0.131086 0.131086 2.80e-10 0.000
models.itu676.gamma_exact 41.0 1013.25 7.5 288.15 0.139981 0.139981 2.68e-10 0.000
models.itu676.gamma_exact 42.0 1013.25 7.5 288.15 0.150269 0.150269 3.31e-10 0.000
models.itu676.gamma_exact 43.0 1013.25 7.5 288.15 0.162276 0.162276 -4.90e-12 -0.000
models.itu676.gamma_exact 44.0 1013.25 7.5 288.15 0.176460 0.176460 1.26e-10 0.000
models.itu676.gamma_exact 45.0 1013.25 7.5 288.15 0.193481 0.193481 3.81e-10 0.000
models.itu676.gamma_exact 46.0 1013.25 7.5 288.15 0.214318 0.214318 -1.86e-10 -0.000
models.itu676.gamma_exact 47.0 1013.25 7.5 288.15 0.240480 0.240480 4.84e-10 0.000
models.itu676.gamma_exact 48.0 1013.25 7.5 288.15 0.274425 0.274425 -4.91e-10 -0.000
models.itu676.gamma_exact 49.0 1013.25 7.5 288.15 0.320551 0.320551 -1.99e-10 -0.000
models.itu676.gamma_exact 50.0 1013.25 7.5 288.15 0.388427 0.388427 1.99e-10 0.000
models.itu676.gamma_exact 51.0 1013.25 7.5 288.15 0.504721 0.504721 -3.93e-10 -0.000
models.itu676.gamma_exact 52.0 1013.25 7.5 288.15 0.737479 0.737479 1.71e-10 0.000
models.itu676.gamma_exact 53.0 1013.25 7.5 288.15 1.249765 1.249765 4.17e-10 0.000
models.itu676.gamma_exact 54.0 1013.25 7.5 288.15 2.338904 2.338904 -1.21e-10 -0.000
models.itu676.gamma_exact 55.0 1013.25 7.5 288.15 4.324956 4.324956 3.08e-10 0.000
models.itu676.gamma_exact 56.0 1013.25 7.5 288.15 7.191136 7.191136 4.19e-11 0.000
models.itu676.gamma_exact 57.0 1013.25 7.5 288.15 10.205851 10.205852 -3.39e-09 -0.000
models.itu676.gamma_exact 58.0 1013.25 7.5 288.15 12.498391 12.498391 -3.72e-09 -0.000
models.itu676.gamma_exact 59.0 1013.25 7.5 288.15 13.785280 13.785280 -2.11e-09 -0.000
models.itu676.gamma_exact 60.0 1013.25 7.5 288.15 14.778317 14.778317 2.88e-09 0.000
models.itu676.gamma_exact 61.0 1013.25 7.5 288.15 15.166986 15.166986 -2.31e-09 -0.000
models.itu676.gamma_exact 62.0 1013.25 7.5 288.15 14.161167 14.161167 -4.44e-09 -0.000
models.itu676.gamma_exact 63.0 1013.25 7.5 288.15 11.001342 11.001342 -2.97e-09 -0.000
models.itu676.gamma_exact 64.0 1013.25 7.5 288.15 7.020353 7.020353 -6.92e-11 -0.000
models.itu676.gamma_exact 65.0 1013.25 7.5 288.15 3.990338 3.990338 -1.21e-10 -0.000
models.itu676.gamma_exact 66.0 1013.25 7.5 288.15 2.154196 2.154196 7.42e-11 0.000
models.itu676.gamma_exact 67.0 1013.25 7.5 288.15 1.227115 1.227115 4.67e-10 0.000
models.itu676.gamma_exact 68.0 1013.25 7.5 288.15 0.805021 0.805021 1.83e-10 0.000
models.itu676.gamma_exact 69.0 1013.25 7.5 288.15 0.611819 0.611819 -4.54e-10 -0.000
models.itu676.gamma_exact 70.0 1013.25 7.5 288.15 0.513993 0.513993 4.88e-10 0.000
models.itu676.gamma_exact 71.0 1013.25 7.5 288.15 0.456680 0.456680 -3.64e-10 -0.000
models.itu676.gamma_exact 72.0 1013.25 7.5 288.15 0.419049 0.419049 3.12e-10 0.000
models.itu676.gamma_exact 73.0 1013.25 7.5 288.15 0.393232 0.393232 -1.70e-10 -0.000
models.itu676.gamma_exact 74.0 1013.25 7.5 288.15 0.375190 0.375190 -4.12e-10 -0.000
models.itu676.gamma_exact 75.0 1013.25 7.5 288.15 0.362554 0.362554 8.17e-11 0.000
models.itu676.gamma_exact 76.0 1013.25 7.5 288.15 0.353835 0.353835 4.18e-10 0.000
models.itu676.gamma_exact 77.0 1013.25 7.5 288.15 0.348044 0.348044 -2.67e-10 -0.000
models.itu676.gamma_exact 78.0 1013.25 7.5 288.15 0.344501 0.344501 -4.78e-10 -0.000
models.itu676.gamma_exact 79.0 1013.25 7.5 288.15 0.342726 0.342726 -1.19e-10 -0.000
models.itu676.gamma_exact 80.0 1013.25 7.5 288.15 0.342368 0.342368 9.74e-11 0.000
models.itu676.gamma_exact 81.0 1013.25 7.5 288.15 0.343167 0.343167 -1.40e-10 -0.000
models.itu676.gamma_exact 82.0 1013.25 7.5 288.15 0.344926 0.344926 -1.13e-10 -0.000
models.itu676.gamma_exact 83.0 1013.25 7.5 288.15 0.347495 0.347495 -4.10e-10 -0.000
models.itu676.gamma_exact 84.0 1013.25 7.5 288.15 0.350757 0.350757 1.18e-10 0.000
models.itu676.gamma_exact 85.0 1013.25 7.5 288.15 0.354619 0.354619 -4.94e-10 -0.000
models.itu676.gamma_exact 86.0 1013.25 7.5 288.15 0.359008 0.359008 2.15e-10 0.000
models.itu676.gamma_exact 87.0 1013.25 7.5 288.15 0.363867 0.363867 -4.80e-10 -0.000
models.itu676.gamma_exact 88.0 1013.25 7.5 288.15 0.369150 0.369150 -4.01e-10 -0.000
models.itu676.gamma_exact 89.0 1013.25 7.5 288.15 0.374818 0.374818 3.30e-10 0.000
models.itu676.gamma_exact 90.0 1013.25 7.5 288.15 0.380843 0.380843 -4.95e-10 -0.000
models.itu676.gamma_exact 91.0 1013.25 7.5 288.15 0.387202 0.387202 -1.20e-10 -0.000
models.itu676.gamma_exact 92.0 1013.25 7.5 288.15 0.393877 0.393877 2.12e-10 0.000
models.itu676.gamma_exact 93.0 1013.25 7.5 288.15 0.400855 0.400855 -3.37e-10 -0.000
models.itu676.gamma_exact 94.0 1013.25 7.5 288.15 0.408129 0.408129 -3.90e-11 -0.000
models.itu676.gamma_exact 95.0 1013.25 7.5 288.15 0.415693 0.415693 -1.90e-10 -0.000
models.itu676.gamma_exact 96.0 1013.25 7.5 288.15 0.423549 0.423549 2.48e-10 0.000
models.itu676.gamma_exact 97.0 1013.25 7.5 288.15 0.431701 0.431701 3.52e-10 0.000
models.itu676.gamma_exact 98.0 1013.25 7.5 288.15 0.440158 0.440158 1.15e-10 0.000
models.itu676.gamma_exact 99.0 1013.25 7.5 288.15 0.448936 0.448936 -3.11e-10 -0.000
models.itu676.gamma_exact 100.0 1013.25 7.5 288.15 0.458059 0.458059 2.49e-10 0.000
models.itu676.gamma_exact 101.0 1013.25 7.5 288.15 0.467558 0.467558 -2.27e-10 -0.000
models.itu676.gamma_exact 102.0 1013.25 7.5 288.15 0.477477 0.477477 -1.65e-10 -0.000
models.itu676.gamma_exact 103.0 1013.25 7.5 288.15 0.487876 0.487876 1.86e-10 0.000
models.itu676.gamma_exact 104.0 1013.25 7.5 288.15 0.498836 0.498836 9.17e-12 0.000
models.itu676.gamma_exact 105.0 1013.25 7.5 288.15 0.510473 0.510473 3.16e-10 0.000
models.itu676.gamma_exact 106.0 1013.25 7.5 288.15 0.522944 0.522944 1.69e-10 0.000
models.itu676.gamma_exact 107.0 1013.25 7.5 288.15 0.536477 0.536477 3.96e-10 0.000
models.itu676.gamma_exact 108.0 1013.25 7.5 288.15 0.551407 0.551407 -2.42e-10 -0.000
models.itu676.gamma_exact 109.0 1013.25 7.5 288.15 0.568236 0.568236 -2.64e-11 -0.000
models.itu676.gamma_exact 110.0 1013.25 7.5 288.15 0.587749 0.587749 2.53e-10 0.000
models.itu676.gamma_exact 111.0 1013.25 7.5 288.15 0.611222 0.611222 4.85e-10 0.000
models.itu676.gamma_exact 112.0 1013.25 7.5 288.15 0.640824 0.640824 -1.98e-10 -0.000
models.itu676.gamma_exact 113.0 1013.25 7.5 288.15 0.680468 0.680468 1.71e-10 0.000
models.itu676.gamma_exact 114.0 1013.25 7.5 288.15 0.737669 0.737669 1.32e-11 0.000
models.itu676.gamma_exact 115.0 1013.25 7.5 288.15 0.827930 0.827930 -4.62e-10 -0.000
models.itu676.gamma_exact 116.0 1013.25 7.5 288.15 0.984980 0.984980 4.85e-10 0.000
models.itu676.gamma_exact 117.0 1013.25 7.5 288.15 1.277069 1.277069 2.73e-10 0.000
models.itu676.gamma_exact 118.0 1013.25 7.5 288.15 1.740788 1.740788 -4.65e-10 -0.000
models.itu676.gamma_exact 119.0 1013.25 7.5 288.15 1.924373 1.924373 2.69e-10 0.000
models.itu676.gamma_exact 120.0 1013.25 7.5 288.15 1.515969 1.515969 8.54e-11 0.000
models.itu676.gamma_exact 121.0 1013.25 7.5 288.15 1.150394 1.150394 6.17e-11 0.000
models.itu676.gamma_exact 122.0 1013.25 7.5 288.15 0.960113 0.960113 -3.17e-10 -0.000
models.itu676.gamma_exact 123.0 1013.25 7.5 288.15 0.865748 0.865748 -2.29e-12 -0.000
models.itu676.gamma_exact 124.0 1013.25 7.5 288.15 0.817871 0.817871 -4.18e-10 -0.000
models.itu676.gamma_exact 125.0 1013.25 7.5 288.15 0.793758 0.793758 1.82e-10 0.000
models.itu676.gamma_exact 126.0 1013.25 7.5 288.15 0.782753 0.782753 -1.29e-10 -0.000
models.itu676.gamma_exact 127.0 1013.25 7.5 288.15 0.779515 0.779515 -1.12e-11 -0.000
models.itu676.gamma_exact 128.0 1013.25 7.5 288.15 0.781178 0.781178 1.29e-10 0.000
models.itu676.gamma_exact 129.0 1013.25 7.5 288.15 0.786116 0.786116 -2.43e-10 -0.000
models.itu676.gamma_exact 130.0 1013.25 7.5 288.15 0.793354 0.793354 -2.46e-10 -0.000
models.itu676.gamma_exact 131.0 1013.25 7.5 288.15 0.802287 0.802287 2.44e-10 0.000
models.itu676.gamma_exact 132.0 1013.25 7.5 288.15 0.812525 0.812525 6.00e-11 0.000
models.itu676.gamma_exact 133.0 1013.25 7.5 288.15 0.823814 0.823814 -1.49e-10 -0.000
models.itu676.gamma_exact 134.0 1013.25 7.5 288.15 0.835981 0.835981 -4.23e-10 -0.000
models.itu676.gamma_exact 135.0 1013.25 7.5 288.15 0.848912 0.848912 -4.39e-10 -0.000
models.itu676.gamma_exact 136.0 1013.25 7.5 288.15 0.862531 0.862531 -3.39e-10 -0.000
models.itu676.gamma_exact 137.0 1013.25 7.5 288.15 0.876789 0.876789 7.94e-11 0.000
models.itu676.gamma_exact 138.0 1013.25 7.5 288.15 0.891658 0.891658 2.07e-10 0.000
models.itu676.gamma_exact 139.0 1013.25 7.5 288.15 0.907125 0.907125 5.72e-11 0.000
models.itu676.gamma_exact 140.0 1013.25 7.5 288.15 0.923189 0.923189 -3.51e-10 -0.000
models.itu676.gamma_exact 141.0 1013.25 7.5 288.15 0.939861 0.939861 -1.21e-10 -0.000
models.itu676.gamma_exact 142.0 1013.25 7.5 288.15 0.957161 0.957161 1.48e-10 0.000
models.itu676.gamma_exact 143.0 1013.25 7.5 288.15 0.975117 0.975117 2.49e-10 0.000
models.itu676.gamma_exact 144.0 1013.25 7.5 288.15 0.993767 0.993767 -3.37e-10 -0.000
models.itu676.gamma_exact 145.0 1013.25 7.5 288.15 1.013156 1.013156 -1.90e-10 -0.000
models.itu676.gamma_exact 146.0 1013.25 7.5 288.15 1.033342 1.033342 -1.45e-10 -0.000
models.itu676.gamma_exact 147.0 1013.25 7.5 288.15 1.054390 1.054390 -3.04e-10 -0.000
models.itu676.gamma_exact 148.0 1013.25 7.5 288.15 1.076380 1.076380 4.38e-10 0.000
models.itu676.gamma_exact 149.0 1013.25 7.5 288.15 1.099402 1.099402 -1.43e-10 -0.000
models.itu676.gamma_exact 150.0 1013.25 7.5 288.15 1.123565 1.123565 -1.98e-10 -0.000
models.itu676.gamma_exact 151.0 1013.25 7.5 288.15 1.148992 1.148992 -1.71e-10 -0.000
models.itu676.gamma_exact 152.0 1013.25 7.5 288.15 1.175832 1.175832 4.13e-10 0.000
models.itu676.gamma_exact 153.0 1013.25 7.5 288.15 1.204257 1.204257 -6.22e-11 -0.000
models.itu676.gamma_exact 154.0 1013.25 7.5 288.15 1.234469 1.234469 -1.30e-10 -0.000
models.itu676.gamma_exact 155.0 1013.25 7.5 288.15 1.266709 1.266709 2.64e-11 0.000
models.itu676.gamma_exact 156.0 1013.25 7.5 288.15 1.301261 1.301261 3.28e-11 0.000
models.itu676.gamma_exact 157.0 1013.25 7.5 288.15 1.338466 1.338466 1.11e-10 0.000
models.itu676.gamma_exact 158.0 1013.25 7.5 288.15 1.378730 1.378730 1.79e-10 0.000
models.itu676.gamma_exact 159.0 1013.25 7.5 288.15 1.422548 1.422548 3.02e-10 0.000
models.itu676.gamma_exact 160.0 1013.25 7.5 288.15 1.470518 1.470518 -1.56e-11 -0.000
models.itu676.gamma_exact 161.0 1013.25 7.5 288.15 1.523374 1.523374 3.33e-10 0.000
models.itu676.gamma_exact 162.0 1013.25 7.5 288.15 1.582021 1.582021 -2.02e-10 -0.000
models.itu676.gamma_exact 163.0 1013.25 7.5 288.15 1.647586 1.647586 2.83e-10 0.000
models.itu676.gamma_exact 164.0 1013.25 7.5 288.15 1.721486 1.721486 -1.83e-10 -0.000
models.itu676.gamma_exact 165.0 1013.25 7.5 288.15 1.805518 1.805518 -3.18e-10 -0.000
models.itu676.gamma_exact 166.0 1013.25 7.5 288.15 1.901988 1.901988 5.04e-11 0.000
models.itu676.gamma_exact 167.0 1013.25 7.5 288.15 2.013888 2.013888 3.77e-10 0.000
models.itu676.gamma_exact 168.0 1013.25 7.5 288.15 2.145157 2.145157 1.30e-10 0.000
models.itu676.gamma_exact 169.0 1013.25 7.5 288.15 2.301047 2.301047 3.02e-10 0.000
models.itu676.gamma_exact 170.0 1013.25 7.5 288.15 2.488677 2.488677 -9.00e-11 -0.000
models.itu676.gamma_exact 171.0 1013.25 7.5 288.15 2.717859 2.717859 -4.51e-10 -0.000
models.itu676.gamma_exact 172.0 1013.25 7.5 288.15 3.002369 3.002369 1.18e-11 0.000
models.itu676.gamma_exact 173.0 1013.25 7.5 288.15 3.361946 3.361946 -3.52e-10 -0.000
models.itu676.gamma_exact 174.0 1013.25 7.5 288.15 3.825481 3.825481 1.16e-10 0.000
models.itu676.gamma_exact 175.0 1013.25 7.5 288.15 4.436214 4.436214 8.38e-11 0.000
models.itu676.gamma_exact 176.0 1013.25 7.5 288.15 5.260269 5.260269 -4.04e-10 -0.000
models.itu676.gamma_exact 177.0 1013.25 7.5 288.15 6.400521 6.400521 -4.44e-10 -0.000
models.itu676.gamma_exact 178.0 1013.25 7.5 288.15 8.017786 8.017786 1.23e-10 0.000
models.itu676.gamma_exact 179.0 1013.25 7.5 288.15 10.356174 10.356174 -2.11e-10 -0.000
models.itu676.gamma_exact 180.0 1013.25 7.5 288.15 13.741083 13.741083 1.92e-09 0.000
models.itu676.gamma_exact 181.0 1013.25 7.5 288.15 18.411761 18.411761 4.05e-09 0.000
models.itu676.gamma_exact 182.0 1013.25 7.5 288.15 23.843154 23.843154 -4.24e-09 -0.000
models.itu676.gamma_exact 183.0 1013.25 7.5 288.15 27.677742 27.677742 -3.00e-09 -0.000
models.itu676.gamma_exact 184.0 1013.25 7.5 288.15 27.037613 27.037613 -3.92e-09 -0.000
models.itu676.gamma_exact 185.0 1013.25 7.5 288.15 22.616532 22.616532 -2.71e-09 -0.000
models.itu676.gamma_exact 186.0 1013.25 7.5 288.15 17.493731 17.493731 4.00e-09 0.000
models.itu676.gamma_exact 187.0 1013.25 7.5 288.15 13.352922 13.352922 5.21e-09 0.000
models.itu676.gamma_exact 188.0 1013.25 7.5 288.15 10.385526 10.385526 -1.44e-09 -0.000
models.itu676.gamma_exact 189.0 1013.25 7.5 288.15 8.319332 8.319332 -3.17e-10 -0.000
models.itu676.gamma_exact 190.0 1013.25 7.5 288.15 6.871215 6.871215 1.14e-10 0.000
models.itu676.gamma_exact 191.0 1013.25 7.5 288.15 5.837000 5.837000 -3.69e-10 -0.000
models.itu676.gamma_exact 192.0 1013.25 7.5 288.15 5.082089 5.082089 -4.70e-10 -0.000
models.itu676.gamma_exact 193.0 1013.25 7.5 288.15 4.519256 4.519256 -4.58e-10 -0.000
models.itu676.gamma_exact 194.0 1013.25 7.5 288.15 4.091497 4.091497 -3.04e-10 -0.000
models.itu676.gamma_exact 195.0 1013.25 7.5 288.15 3.760872 3.760872 -4.51e-10 -0.000
models.itu676.gamma_exact 196.0 1013.25 7.5 288.15 3.501597 3.501597 -2.17e-11 -0.000
models.itu676.gamma_exact 197.0 1013.25 7.5 288.15 3.295767 3.295767 -1.65e-10 -0.000
models.itu676.gamma_exact 198.0 1013.25 7.5 288.15 3.130691 3.130691 -5.55e-12 -0.000
models.itu676.gamma_exact 199.0 1013.25 7.5 288.15 2.997199 2.997199 -4.00e-11 -0.000
models.itu676.gamma_exact 200.0 1013.25 7.5 288.15 2.888548 2.888548 -5.17e-11 -0.000
models.itu676.gamma_exact 201.0 1013.25 7.5 288.15 2.799698 2.799698 2.36e-10 0.000
models.itu676.gamma_exact 202.0 1013.25 7.5 288.15 2.726826 2.726826 -4.59e-10 -0.000
models.itu676.gamma_exact 203.0 1013.25 7.5 288.15 2.666990 2.666990 -2.84e-10 -0.000
models.itu676.gamma_exact 204.0 1013.25 7.5 288.15 2.617902 2.617902 -1.26e-10 -0.000
models.itu676.gamma_exact 205.0 1013.25 7.5 288.15 2.577758 2.577758 3.54e-10 0.000
models.itu676.gamma_exact 206.0 1013.25 7.5 288.15 2.545124 2.545124 -1.81e-10 -0.000
models.itu676.gamma_exact 207.0 1013.25 7.5 288.15 2.518846 2.518846 -2.31e-10 -0.000
models.itu676.gamma_exact 208.0 1013.25 7.5 288.15 2.497989 2.497989 -3.72e-10 -0.000
models.itu676.gamma_exact 209.0 1013.25 7.5 288.15 2.481788 2.481788 -3.87e-10 -0.000
models.itu676.gamma_exact 210.0 1013.25 7.5 288.15 2.469615 2.469615 -1.71e-10 -0.000
models.itu676.gamma_exact 211.0 1013.25 7.5 288.15 2.460947 2.460947 -4.40e-11 -0.000
models.itu676.gamma_exact 212.0 1013.25 7.5 288.15 2.455348 2.455348 4.72e-10 0.000
models.itu676.gamma_exact 213.0 1013.25 7.5 288.15 2.452451 2.452451 8.93e-11 0.000
models.itu676.gamma_exact 214.0 1013.25 7.5 288.15 2.451947 2.451947 -2.71e-10 -0.000
models.itu676.gamma_exact 215.0 1013.25 7.5 288.15 2.453573 2.453573 -2.32e-10 -0.000
models.itu676.gamma_exact 216.0 1013.25 7.5 288.15 2.457105 2.457105 -2.24e-11 -0.000
models.itu676.gamma_exact 217.0 1013.25 7.5 288.15 2.462350 2.462350 -4.17e-10 -0.000
models.itu676.gamma_exact 218.0 1013.25 7.5 288.15 2.469142 2.469142 -1.30e-10 -0.000
models.itu676.gamma_exact 219.0 1013.25 7.5 288.15 2.477338 2.477338 3.03e-10 0.000
models.itu676.gamma_exact 220.0 1013.25 7.5 288.15 2.486814 2.486814 -4.93e-10 -0.000
models.itu676.gamma_exact 221.0 1013.25 7.5 288.15 2.497462 2.497462 -3.36e-10 -0.000
models.itu676.gamma_exact 222.0 1013.25 7.5 288.15 2.509186 2.509186 -3.94e-10 -0.000
models.itu676.gamma_exact 223.0 1013.25 7.5 288.15 2.521903 2.521903 1.21e-10 0.000
models.itu676.gamma_exact 224.0 1013.25 7.5 288.15 2.535542 2.535542 4.92e-10 0.000
models.itu676.gamma_exact 225.0 1013.25 7.5 288.15 2.550037 2.550037 -4.50e-10 -0.000
models.itu676.gamma_exact 226.0 1013.25 7.5 288.15 2.565332 2.565332 2.67e-10 0.000
models.itu676.gamma_exact 227.0 1013.25 7.5 288.15 2.581377 2.581377 4.10e-10 0.000
models.itu676.gamma_exact 228.0 1013.25 7.5 288.15 2.598127 2.598127 2.78e-10 0.000
models.itu676.gamma_exact 229.0 1013.25 7.5 288.15 2.615543 2.615543 -3.37e-10 -0.000
models.itu676.gamma_exact 230.0 1013.25 7.5 288.15 2.633589 2.633589 4.63e-10 0.000
models.itu676.gamma_exact 231.0 1013.25 7.5 288.15 2.652236 2.652236 -3.24e-10 -0.000
models.itu676.gamma_exact 232.0 1013.25 7.5 288.15 2.671454 2.671454 4.86e-10 0.000
models.itu676.gamma_exact 233.0 1013.25 7.5 288.15 2.691219 2.691219 -2.53e-10 -0.000
models.itu676.gamma_exact 234.0 1013.25 7.5 288.15 2.711509 2.711509 2.25e-10 0.000
models.itu676.gamma_exact 235.0 1013.25 7.5 288.15 2.732304 2.732304 3.76e-10 0.000
models.itu676.gamma_exact 236.0 1013.25 7.5 288.15 2.753588 2.753588 1.16e-10 0.000
models.itu676.gamma_exact 237.0 1013.25 7.5 288.15 2.775343 2.775343 3.22e-11 0.000
models.itu676.gamma_exact 238.0 1013.25 7.5 288.15 2.797558 2.797558 -4.52e-10 -0.000
models.itu676.gamma_exact 239.0 1013.25 7.5 288.15 2.820219 2.820219 -1.17e-10 -0.000
models.itu676.gamma_exact 240.0 1013.25 7.5 288.15 2.843316 2.843316 2.11e-11 0.000
models.itu676.gamma_exact 241.0 1013.25 7.5 288.15 2.866840 2.866840 4.19e-10 0.000
models.itu676.gamma_exact 242.0 1013.25 7.5 288.15 2.890782 2.890782 -2.46e-10 -0.000
models.itu676.gamma_exact 243.0 1013.25 7.5 288.15 2.915135 2.915135 -3.25e-10 -0.000
models.itu676.gamma_exact 244.0 1013.25 7.5 288.15 2.939894 2.939894 2.11e-10 0.000
models.itu676.gamma_exact 245.0 1013.25 7.5 288.15 2.965054 2.965054 2.56e-10 0.000
models.itu676.gamma_exact 246.0 1013.25 7.5 288.15 2.990610 2.990610 3.24e-10 0.000
models.itu676.gamma_exact 247.0 1013.25 7.5 288.15 3.016559 3.016559 -4.15e-10 -0.000
models.itu676.gamma_exact 248.0 1013.25 7.5 288.15 3.042898 3.042898 5.60e-11 0.000
models.itu676.gamma_exact 249.0 1013.25 7.5 288.15 3.069627 3.069627 -3.56e-10 -0.000
models.itu676.gamma_exact 250.0 1013.25 7.5 288.15 3.096744 3.096744 -3.29e-10 -0.000
models.itu676.gamma_exact 251.0 1013.25 7.5 288.15 3.124248 3.124248 3.68e-10 0.000
models.itu676.gamma_exact 252.0 1013.25 7.5 288.15 3.152141 3.152141 -2.69e-10 -0.000
models.itu676.gamma_exact 253.0 1013.25 7.5 288.15 3.180423 3.180423 8.10e-11 0.000
models.itu676.gamma_exact 254.0 1013.25 7.5 288.15 3.209097 3.209097 -4.40e-10 -0.000
models.itu676.gamma_exact 255.0 1013.25 7.5 288.15 3.238164 3.238164 -2.72e-10 -0.000
models.itu676.gamma_exact 256.0 1013.25 7.5 288.15 3.267628 3.267628 3.82e-10 0.000
models.itu676.gamma_exact 257.0 1013.25 7.5 288.15 3.297492 3.297492 -3.92e-10 -0.000
models.itu676.gamma_exact 258.0 1013.25 7.5 288.15 3.327761 3.327761 6.93e-11 0.000
models.itu676.gamma_exact 259.0 1013.25 7.5 288.15 3.358440 3.358440 4.02e-10 0.000
models.itu676.gamma_exact 260.0 1013.25 7.5 288.15 3.389535 3.389535 -4.13e-10 -0.000
models.itu676.gamma_exact 261.0 1013.25 7.5 288.15 3.421052 3.421052 4.66e-11 0.000
models.itu676.gamma_exact 262.0 1013.25 7.5 288.15 3.452998 3.452998 1.63e-10 0.000
models.itu676.gamma_exact 263.0 1013.25 7.5 288.15 3.485382 3.485382 -1.77e-10 -0.000
models.itu676.gamma_exact 264.0 1013.25 7.5 288.15 3.518213 3.518213 -4.94e-10 -0.000
models.itu676.gamma_exact 265.0 1013.25 7.5 288.15 3.551499 3.551499 3.37e-10 0.000
models.itu676.gamma_exact 266.0 1013.25 7.5 288.15 3.585252 3.585252 3.80e-10 0.000
models.itu676.gamma_exact 267.0 1013.25 7.5 288.15 3.619484 3.619484 3.57e-10 0.000
models.itu676.gamma_exact 268.0 1013.25 7.5 288.15 3.654207 3.654207 -2.07e-10 -0.000
models.itu676.gamma_exact 269.0 1013.25 7.5 288.15 3.689435 3.689435 4.13e-10 0.000
models.itu676.gamma_exact 270.0 1013.25 7.5 288.15 3.725184 3.725184 4.29e-10 0.000
models.itu676.gamma_exact 271.0 1013.25 7.5 288.15 3.761470 3.761470 8.06e-11 0.000
models.itu676.gamma_exact 272.0 1013.25 7.5 288.15 3.798310 3.798310 -4.66e-10 -0.000
models.itu676.gamma_exact 273.0 1013.25 7.5 288.15 3.835725 3.835725 -1.25e-10 -0.000
models.itu676.gamma_exact 274.0 1013.25 7.5 288.15 3.873736 3.873736 -4.56e-10 -0.000
models.itu676.gamma_exact 275.0 1013.25 7.5 288.15 3.912367 3.912367 7.15e-11 0.000
models.itu676.gamma_exact 276.0 1013.25 7.5 288.15 3.951643 3.951643 3.65e-10 0.000
models.itu676.gamma_exact 277.0 1013.25 7.5 288.15 3.991592 3.991592 1.24e-10 0.000
models.itu676.gamma_exact 278.0 1013.25 7.5 288.15 4.032246 4.032246 8.69e-11 0.000
models.itu676.gamma_exact 279.0 1013.25 7.5 288.15 4.073638 4.073638 -2.35e-10 -0.000
models.itu676.gamma_exact 280.0 1013.25 7.5 288.15 4.115805 4.115805 7.53e-11 0.000
models.itu676.gamma_exact 281.0 1013.25 7.5 288.15 4.158790 4.158790 -2.97e-10 -0.000
models.itu676.gamma_exact 282.0 1013.25 7.5 288.15 4.202638 4.202638 1.22e-10 0.000
models.itu676.gamma_exact 283.0 1013.25 7.5 288.15 4.247399 4.247399 -1.71e-10 -0.000
models.itu676.gamma_exact 284.0 1013.25 7.5 288.15 4.293130 4.293130 3.96e-10 0.000
models.itu676.gamma_exact 285.0 1013.25 7.5 288.15 4.339894 4.339894 2.71e-10 0.000
models.itu676.gamma_exact 286.0 1013.25 7.5 288.15 4.387762 4.387762 -3.64e-10 -0.000
models.itu676.gamma_exact 287.0 1013.25 7.5 288.15 4.436812 4.436812 -1.82e-10 -0.000
models.itu676.gamma_exact 288.0 1013.25 7.5 288.15 4.487133 4.487133 3.26e-10 0.000
models.itu676.gamma_exact 289.0 1013.25 7.5 288.15 4.538827 4.538827 1.83e-10 0.000
models.itu676.gamma_exact 290.0 1013.25 7.5 288.15 4.592008 4.592008 9.68e-11 0.000
models.itu676.gamma_exact 291.0 1013.25 7.5 288.15 4.646805 4.646805 3.68e-10 0.000
models.itu676.gamma_exact 292.0 1013.25 7.5 288.15 4.703368 4.703368 7.39e-11 0.000
models.itu676.gamma_exact 293.0 1013.25 7.5 288.15 4.761867 4.761867 4.35e-10 0.000
models.itu676.gamma_exact 294.0 1013.25 7.5 288.15 4.822499 4.822499 7.84e-11 0.000
models.itu676.gamma_exact 295.0 1013.25 7.5 288.15 4.885495 4.885495 1.83e-10 0.000
models.itu676.gamma_exact 296.0 1013.25 7.5 288.15 4.951119 4.951119 -2.10e-10 -0.000
models.itu676.gamma_exact 297.0 1013.25 7.5 288.15 5.019686 5.019686 -1.72e-10 -0.000
models.itu676.gamma_exact 298.0 1013.25 7.5 288.15 5.091564 5.091564 -2.90e-10 -0.000
models.itu676.gamma_exact 299.0 1013.25 7.5 288.15 5.167190 5.167190 -9.81e-12 -0.000
models.itu676.gamma_exact 300.0 1013.25 7.5 288.15 5.247089 5.247089 -3.87e-10 -0.000
models.itu676.gamma_exact 301.0 1013.25 7.5 288.15 5.331888 5.331888 -1.70e-10 -0.000
models.itu676.gamma_exact 302.0 1013.25 7.5 288.15 5.422350 5.422350 -2.41e-10 -0.000
models.itu676.gamma_exact 303.0 1013.25 7.5 288.15 5.519407 5.519407 -4.98e-10 -0.000
models.itu676.gamma_exact 304.0 1013.25 7.5 288.15 5.624209 5.624209 -5.51e-11 -0.000
models.itu676.gamma_exact 305.0 1013.25 7.5 288.15 5.738183 5.738183 -1.26e-10 -0.000
models.itu676.gamma_exact 306.0 1013.25 7.5 288.15 5.863128 5.863128 7.16e-11 0.000
models.itu676.gamma_exact 307.0 1013.25 7.5 288.15 6.001328 6.001328 1.73e-10 0.000
models.itu676.gamma_exact 308.0 1013.25 7.5 288.15 6.155723 6.155723 2.83e-10 0.000
models.itu676.gamma_exact 309.0 1013.25 7.5 288.15 6.330146 6.330146 2.30e-10 0.000
models.itu676.gamma_exact 310.0 1013.25 7.5 288.15 6.529669 6.529669 -2.21e-10 -0.000
models.itu676.gamma_exact 311.0 1013.25 7.5 288.15 6.761108 6.761108 4.60e-10 0.000
models.itu676.gamma_exact 312.0 1013.25 7.5 288.15 7.033795 7.033795 1.90e-10 0.000
models.itu676.gamma_exact 313.0 1013.25 7.5 288.15 7.360752 7.360752 -1.27e-10 -0.000
models.itu676.gamma_exact 314.0 1013.25 7.5 288.15 7.760560 7.760560 -3.14e-10 -0.000
models.itu676.gamma_exact 315.0 1013.25 7.5 288.15 8.260373 8.260373 4.20e-10 0.000
models.itu676.gamma_exact 316.0 1013.25 7.5 288.15 8.900903 8.900903 -4.79e-10 -0.000
models.itu676.gamma_exact 317.0 1013.25 7.5 288.15 9.744688 9.744688 2.60e-10 0.000
models.itu676.gamma_exact 318.0 1013.25 7.5 288.15 10.889185 10.889185 -3.27e-09 -0.000
models.itu676.gamma_exact 319.0 1013.25 7.5 288.15 12.482780 12.482780 -4.83e-10 -0.000
models.itu676.gamma_exact 320.0 1013.25 7.5 288.15 14.723576 14.723576 -2.88e-09 -0.000
models.itu676.gamma_exact 321.0 1013.25 7.5 288.15 17.809242 17.809242 -4.34e-09 -0.000
models.itu676.gamma_exact 322.0 1013.25 7.5 288.15 21.987923 21.987923 3.10e-09 0.000
models.itu676.gamma_exact 323.0 1013.25 7.5 288.15 27.614013 27.614013 -1.58e-09 -0.000
models.itu676.gamma_exact 324.0 1013.25 7.5 288.15 34.010735 34.010735 3.77e-09 0.000
models.itu676.gamma_exact 325.0 1013.25 7.5 288.15 37.892209 37.892209 2.59e-10 0.000
models.itu676.gamma_exact 326.0 1013.25 7.5 288.15 35.935051 35.935051 -3.16e-09 -0.000
models.itu676.gamma_exact 327.0 1013.25 7.5 288.15 29.978411 29.978411 5.21e-09 0.000
models.itu676.gamma_exact 328.0 1013.25 7.5 288.15 23.903133 23.903133 3.35e-09 0.000
models.itu676.gamma_exact 329.0 1013.25 7.5 288.15 19.295446 19.295446 -1.62e-09 -0.000
models.itu676.gamma_exact 330.0 1013.25 7.5 288.15 16.115428 16.115428 5.62e-10 0.000
models.itu676.gamma_exact 331.0 1013.25 7.5 288.15 13.960793 13.960793 2.97e-09 0.000
models.itu676.gamma_exact 332.0 1013.25 7.5 288.15 12.488934 12.488934 4.08e-09 0.000
models.itu676.gamma_exact 333.0 1013.25 7.5 288.15 11.468502 11.468502 1.91e-10 0.000
models.itu676.gamma_exact 334.0 1013.25 7.5 288.15 10.751700 10.751700 -8.71e-10 -0.000
models.itu676.gamma_exact 335.0 1013.25 7.5 288.15 10.243974 10.243974 -4.13e-09 -0.000
models.itu676.gamma_exact 336.0 1013.25 7.5 288.15 9.882698 9.882698 -4.29e-10 -0.000
models.itu676.gamma_exact 337.0 1013.25 7.5 288.15 9.625634 9.625634 1.37e-10 0.000
models.itu676.gamma_exact 338.0 1013.25 7.5 288.15 9.446598 9.446598 2.47e-10 0.000
models.itu676.gamma_exact 339.0 1013.25 7.5 288.15 9.329258 9.329258 5.55e-11 0.000
models.itu676.gamma_exact 340.0 1013.25 7.5 288.15 9.261534 9.261534 -4.24e-10 -0.000
models.itu676.gamma_exact 341.0 1013.25 7.5 288.15 9.234207 9.234207 3.01e-10 0.000
models.itu676.gamma_exact 342.0 1013.25 7.5 288.15 9.240521 9.240521 3.05e-10 0.000
models.itu676.gamma_exact 343.0 1013.25 7.5 288.15 9.275658 9.275658 -3.72e-10 -0.000
models.itu676.gamma_exact 344.0 1013.25 7.5 288.15 9.336250 9.336250 1.72e-10 0.000
models.itu676.gamma_exact 345.0 1013.25 7.5 288.15 9.420030 9.420030 -2.90e-10 -0.000
models.itu676.gamma_exact 346.0 1013.25 7.5 288.15 9.525579 9.525579 -1.13e-12 -0.000
models.itu676.gamma_exact 347.0 1013.25 7.5 288.15 9.652172 9.652172 4.61e-10 0.000
models.itu676.gamma_exact 348.0 1013.25 7.5 288.15 9.799673 9.799673 4.90e-10 0.000
models.itu676.gamma_exact 349.0 1013.25 7.5 288.15 9.968476 9.968476 -3.37e-10 -0.000
models.itu676.gamma_exact 350.0 1013.25 7.5 288.15 10.159479 10.159479 3.44e-09 0.000


Validation results ITU-R P.836-6

This page contains the validation examples for Recommendation ITU-R P.836-6: Water vapour: surface density and total columnar content.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function total_water_vapour_content

The table below contains the results of testing function total_water_vapour_content. The test cases were extracted from spreadsheet ITURP836-6_total_water_vapour_content_annual.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.133  #  (°N)
lon = 101.7  # (°E)
alt = 0.05125146  # (km)
p = 0.1  # (%)

# Make call to test-function total_water_vapour_content
itur_val = itur.models.itu836.total_water_vapour_content(lat=lat, lon=lon, alt=alt, p=p)

# Compute error with respect to value in ITU example file
ITU_example_val = 65.92042976  # (kg/m2)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu836.total_water_vapour_content
ITU-Rpy Function lat (°N) lon (°E) alt (km) p (%) ITU Validation (kg/m2) ITU-Rpy Result (kg/m2) Absolute Error Relative Error
models.itu836.total_water_vapour_content 3.133 101.70 0.051251 0.10 65.920430 65.920430 8.01e-08 0.000
models.itu836.total_water_vapour_content 3.133 101.70 0.051251 0.15 65.350645 65.350645 8.86e-08 0.000
models.itu836.total_water_vapour_content 3.133 101.70 0.051251 0.30 64.336356 64.336356 8.42e-08 0.000
models.itu836.total_water_vapour_content 3.133 101.70 0.051251 0.35 64.112166 64.112166 8.34e-08 0.000
models.itu836.total_water_vapour_content 22.900 -43.23 0.000000 0.10 56.387886 56.387886 2.81e-09 0.000
models.itu836.total_water_vapour_content 22.900 -43.23 0.000000 0.15 55.360647 55.360647 3.97e-09 0.000
models.itu836.total_water_vapour_content 22.900 -43.23 0.000000 0.30 53.485111 53.485111 -7.41e-10 -0.000
models.itu836.total_water_vapour_content 22.900 -43.23 0.000000 0.35 53.039183 53.039183 -1.65e-09 -0.000
models.itu836.total_water_vapour_content 23.000 30.00 0.187594 0.10 38.801076 38.801076 3.39e-09 0.000
models.itu836.total_water_vapour_content 23.000 30.00 0.187594 0.15 37.545803 37.545803 1.80e-09 0.000
models.itu836.total_water_vapour_content 23.000 30.00 0.187594 0.30 34.965412 34.965412 2.92e-09 0.000
models.itu836.total_water_vapour_content 23.000 30.00 0.187594 0.35 34.401687 34.401687 -4.85e-09 -0.000
models.itu836.total_water_vapour_content 25.780 -80.22 0.008617 0.10 62.684831 62.684831 -3.05e-09 -0.000
models.itu836.total_water_vapour_content 25.780 -80.22 0.008617 0.15 61.793775 61.793775 4.01e-09 0.000
models.itu836.total_water_vapour_content 25.780 -80.22 0.008617 0.30 60.314611 60.314611 -7.41e-10 -0.000
models.itu836.total_water_vapour_content 25.780 -80.22 0.008617 0.35 59.984996 59.984996 3.17e-09 0.000
models.itu836.total_water_vapour_content 28.717 77.30 0.209384 0.10 75.614529 75.614529 2.00e-08 0.000
models.itu836.total_water_vapour_content 28.717 77.30 0.209384 0.15 74.963746 74.963746 2.42e-08 0.000
models.itu836.total_water_vapour_content 28.717 77.30 0.209384 0.30 73.574292 73.574292 2.03e-08 0.000
models.itu836.total_water_vapour_content 28.717 77.30 0.209384 0.35 73.243239 73.243239 2.15e-08 0.000
models.itu836.total_water_vapour_content 33.940 18.43 0.000000 0.10 45.198952 45.198952 -4.96e-09 -0.000
models.itu836.total_water_vapour_content 33.940 18.43 0.000000 0.15 44.152752 44.152752 2.59e-10 0.000
models.itu836.total_water_vapour_content 33.940 18.43 0.000000 0.30 42.210224 42.210224 -1.94e-09 -0.000
models.itu836.total_water_vapour_content 33.940 18.43 0.000000 0.35 41.697726 41.697726 -3.38e-09 -0.000
models.itu836.total_water_vapour_content 41.900 12.49 0.046123 0.10 40.071283 40.071283 2.20e-08 0.000
models.itu836.total_water_vapour_content 41.900 12.49 0.046123 0.15 39.474620 39.474620 2.39e-08 0.000
models.itu836.total_water_vapour_content 41.900 12.49 0.046123 0.30 38.329647 38.329647 2.46e-08 0.000
models.itu836.total_water_vapour_content 41.900 12.49 0.046123 0.35 38.083213 38.083213 2.15e-08 0.000
models.itu836.total_water_vapour_content 51.500 -0.14 0.031383 0.10 39.642498 39.642498 -4.76e-08 -0.000
models.itu836.total_water_vapour_content 51.500 -0.14 0.031383 0.15 38.824475 38.824475 -4.33e-08 -0.000
models.itu836.total_water_vapour_content 51.500 -0.14 0.031383 0.30 37.295953 37.295953 -4.50e-08 -0.000
models.itu836.total_water_vapour_content 51.500 -0.14 0.031383 0.35 36.822058 36.822058 -4.19e-08 -0.000


Function surface_water_vapour_density

The table below contains the results of testing function surface_water_vapour_density. The test cases were extracted from spreadsheet ITURP836-6_surface_water_vapour_density_annual.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.133  #  (°N)
lon = 101.7  # (°E)
alt = 0.05125146  # (km)
p = 0.1  # (%)

# Make call to test-function surface_water_vapour_density
itur_val = itur.models.itu836.surface_water_vapour_density(lat=lat, lon=lon, alt=alt, p=p)

# Compute error with respect to value in ITU example file
ITU_example_val = 24.32302408  # (g/m3)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu836.surface_water_vapour_density
ITU-Rpy Function lat (°N) lon (°E) alt (km) p (%) ITU Validation (g/m3) ITU-Rpy Result (g/m3) Absolute Error Relative Error
models.itu836.surface_water_vapour_density 3.133 101.70 0.051251 0.10 24.323024 24.323024 3.06e-08 0.000
models.itu836.surface_water_vapour_density 3.133 101.70 0.051251 0.15 24.195729 24.195729 3.52e-08 0.000
models.itu836.surface_water_vapour_density 3.133 101.70 0.051251 0.30 23.952441 23.952441 3.28e-08 0.000
models.itu836.surface_water_vapour_density 3.133 101.70 0.051251 0.35 23.893346 23.893346 2.71e-08 0.000
models.itu836.surface_water_vapour_density 22.900 -43.23 0.000000 0.10 21.591649 21.591649 -2.67e-09 -0.000
models.itu836.surface_water_vapour_density 22.900 -43.23 0.000000 0.15 21.461644 21.461644 6.24e-10 0.000
models.itu836.surface_water_vapour_density 22.900 -43.23 0.000000 0.30 21.247533 21.247533 4.81e-09 0.000
models.itu836.surface_water_vapour_density 22.900 -43.23 0.000000 0.35 21.186760 21.186760 -1.08e-09 -0.000
models.itu836.surface_water_vapour_density 23.000 30.00 0.187594 0.10 11.983148 11.983148 -2.61e-09 -0.000
models.itu836.surface_water_vapour_density 23.000 30.00 0.187594 0.15 11.721333 11.721333 2.28e-09 0.000
models.itu836.surface_water_vapour_density 23.000 30.00 0.187594 0.30 11.229887 11.229887 -6.12e-10 -0.000
models.itu836.surface_water_vapour_density 23.000 30.00 0.187594 0.35 11.117501 11.117501 -4.93e-09 -0.000
models.itu836.surface_water_vapour_density 25.780 -80.22 0.008617 0.10 23.448289 23.448289 -4.73e-09 -0.000
models.itu836.surface_water_vapour_density 25.780 -80.22 0.008617 0.15 23.281960 23.281960 -4.93e-09 -0.000
models.itu836.surface_water_vapour_density 25.780 -80.22 0.008617 0.30 23.000809 23.000809 -1.48e-09 -0.000
models.itu836.surface_water_vapour_density 25.780 -80.22 0.008617 0.35 22.937809 22.937809 -3.99e-09 -0.000
models.itu836.surface_water_vapour_density 28.717 77.30 0.209384 0.10 26.009841 26.009841 1.07e-08 0.000
models.itu836.surface_water_vapour_density 28.717 77.30 0.209384 0.15 25.769706 25.769706 3.15e-09 0.000
models.itu836.surface_water_vapour_density 28.717 77.30 0.209384 0.30 25.398943 25.398943 8.78e-09 0.000
models.itu836.surface_water_vapour_density 28.717 77.30 0.209384 0.35 25.314770 25.314770 9.35e-09 0.000
models.itu836.surface_water_vapour_density 33.940 18.43 0.000000 0.10 24.001565 24.001565 -3.08e-09 -0.000
models.itu836.surface_water_vapour_density 33.940 18.43 0.000000 0.15 23.859876 23.859876 -4.09e-09 -0.000
models.itu836.surface_water_vapour_density 33.940 18.43 0.000000 0.30 23.514645 23.514645 3.03e-09 0.000
models.itu836.surface_water_vapour_density 33.940 18.43 0.000000 0.35 23.419545 23.419545 -3.93e-09 -0.000
models.itu836.surface_water_vapour_density 41.900 12.49 0.046123 0.10 19.851665 19.851665 1.54e-08 0.000
models.itu836.surface_water_vapour_density 41.900 12.49 0.046123 0.15 19.556349 19.556349 1.09e-08 0.000
models.itu836.surface_water_vapour_density 41.900 12.49 0.046123 0.30 19.092542 19.092542 1.56e-08 0.000
models.itu836.surface_water_vapour_density 41.900 12.49 0.046123 0.35 18.988935 18.988935 1.70e-08 0.000
models.itu836.surface_water_vapour_density 51.500 -0.14 0.031383 0.10 15.370307 15.370307 -1.86e-08 -0.000
models.itu836.surface_water_vapour_density 51.500 -0.14 0.031383 0.15 15.177703 15.177703 -1.26e-08 -0.000
models.itu836.surface_water_vapour_density 51.500 -0.14 0.031383 0.30 14.783593 14.783593 -1.66e-08 -0.000
models.itu836.surface_water_vapour_density 51.500 -0.14 0.031383 0.35 14.671618 14.671618 -1.81e-08 -0.000


Validation results ITU-R P.837-7

This page contains the validation examples for Recommendation ITU-R P.837-7: Characteristics of precipitation for propagation modelling.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function rainfall_probability

The table below contains the results of testing function rainfall_probability. The test cases were extracted from spreadsheet ITURP837-7_rainfall_rate_probability.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.133  #  (°N)
lon = 101.7  # (°E)

# Make call to test-function rainfall_probability
itur_val = itur.models.itu837.rainfall_probability(lat=lat, lon=lon)

# Compute error with respect to value in ITU example file
ITU_example_val = 4.53654368  # (%)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu837.rainfall_probability
ITU-Rpy Function lat (°N) lon (°E) ITU Validation (%) ITU-Rpy Result (%) Absolute Error Relative Error
models.itu837.rainfall_probability 3.133 101.70 4.536544 4.536544 -4.98e-09 -0.000
models.itu837.rainfall_probability 22.900 -43.23 1.417734 1.417734 1.05e-09 0.000
models.itu837.rainfall_probability 23.000 30.00 0.000519 0.000519 -1.14e-09 -0.000
models.itu837.rainfall_probability 25.780 -80.22 2.907852 2.907852 -4.20e-10 -0.000
models.itu837.rainfall_probability 28.717 77.30 1.070894 1.070894 -3.49e-09 -0.000
models.itu837.rainfall_probability 33.940 18.43 1.275674 1.275674 9.22e-10 0.000
models.itu837.rainfall_probability 41.900 12.49 5.269719 5.269719 -1.87e-09 -0.000
models.itu837.rainfall_probability 51.500 -0.14 5.361510 5.361510 -3.71e-09 -0.000


Function rainfall_rate

The table below contains the results of testing function rainfall_rate. The test cases were extracted from spreadsheet ITURP837-7_rainfall_rate.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.133  #  (°N)
lon = 101.7  # (°E)
p = 0.01  # (%)

# Make call to test-function rainfall_rate
itur_val = itur.models.itu837.rainfall_rate(lat=lat, lon=lon, p=p)

# Compute error with respect to value in ITU example file
ITU_example_val = 99.15117186  # (mm/hr)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu837.rainfall_rate
ITU-Rpy Function lat (°N) lon (°E) p (%) ITU Validation (mm/hr) ITU-Rpy Result (mm/hr) Absolute Error Relative Error
models.itu837.rainfall_rate 3.133 101.70 0.01 99.151172 99.148114 3.06e-03 0.003
models.itu837.rainfall_rate 3.133 101.70 0.10 34.647981 34.648009 -2.74e-05 -0.000
models.itu837.rainfall_rate 3.133 101.70 0.15 27.763620 27.763657 -3.72e-05 -0.000
models.itu837.rainfall_rate 3.133 101.70 0.30 18.262544 18.262543 8.56e-07 0.000
models.itu837.rainfall_rate 3.133 101.70 0.35 16.494932 16.494967 -3.48e-05 -0.000
models.itu837.rainfall_rate 22.900 -43.23 0.01 50.639304 50.639304 -2.84e-14 -0.000
models.itu837.rainfall_rate 22.900 -43.23 0.10 14.589630 14.589645 -1.46e-05 -0.000
models.itu837.rainfall_rate 22.900 -43.23 0.15 11.005101 11.005096 4.68e-06 0.000
models.itu837.rainfall_rate 22.900 -43.23 0.30 6.237962 6.238021 -5.86e-05 -0.001
models.itu837.rainfall_rate 22.900 -43.23 0.35 5.382396 5.382411 -1.48e-05 -0.000
models.itu837.rainfall_rate 23.000 30.00 0.01 0.000000 0.000000 0.00e+00 0.000
models.itu837.rainfall_rate 23.000 30.00 0.10 0.000000 0.000000 0.00e+00 0.000
models.itu837.rainfall_rate 23.000 30.00 0.15 0.000000 0.000000 0.00e+00 0.000
models.itu837.rainfall_rate 23.000 30.00 0.30 0.000000 0.000000 0.00e+00 0.000
models.itu837.rainfall_rate 23.000 30.00 0.35 0.000000 0.000000 0.00e+00 0.000
models.itu837.rainfall_rate 25.780 -80.22 0.01 78.299499 78.298293 1.21e-03 0.002
models.itu837.rainfall_rate 25.780 -80.22 0.10 25.338881 25.338747 1.35e-04 0.001
models.itu837.rainfall_rate 25.780 -80.22 0.15 19.866836 19.866847 -1.07e-05 -0.000
models.itu837.rainfall_rate 25.780 -80.22 0.30 12.436766 12.436785 -1.93e-05 -0.000
models.itu837.rainfall_rate 25.780 -80.22 0.35 11.075661 11.075653 8.12e-06 0.000
models.itu837.rainfall_rate 28.717 77.30 0.01 63.618888 63.597246 2.16e-02 0.034
models.itu837.rainfall_rate 28.717 77.30 0.10 16.538574 16.538493 8.04e-05 0.000
models.itu837.rainfall_rate 28.717 77.30 0.15 12.046514 12.046479 3.49e-05 0.000
models.itu837.rainfall_rate 28.717 77.30 0.30 6.216006 6.215967 3.87e-05 0.001
models.itu837.rainfall_rate 28.717 77.30 0.35 5.196098 5.196132 -3.41e-05 -0.001
models.itu837.rainfall_rate 33.940 18.43 0.01 27.135868 27.134966 9.02e-04 0.003
models.itu837.rainfall_rate 33.940 18.43 0.10 7.431932 7.431947 -1.49e-05 -0.000
models.itu837.rainfall_rate 33.940 18.43 0.15 5.530319 5.530275 4.32e-05 0.001
models.itu837.rainfall_rate 33.940 18.43 0.30 3.035066 3.035061 4.97e-06 0.000
models.itu837.rainfall_rate 33.940 18.43 0.35 2.592761 2.592780 -1.91e-05 -0.001
models.itu837.rainfall_rate 41.900 12.49 0.01 33.936232 33.936232 0.00e+00 0.000
models.itu837.rainfall_rate 41.900 12.49 0.10 11.197983 11.197917 6.59e-05 0.001
models.itu837.rainfall_rate 41.900 12.49 0.15 8.884726 8.884735 -9.69e-06 -0.000
models.itu837.rainfall_rate 41.900 12.49 0.30 5.753563 5.753540 2.30e-05 0.000
models.itu837.rainfall_rate 41.900 12.49 0.35 5.180588 5.180605 -1.65e-05 -0.000
models.itu837.rainfall_rate 51.500 -0.14 0.01 26.480520 26.480520 0.00e+00 0.000
models.itu837.rainfall_rate 51.500 -0.14 0.10 8.992471 8.992486 -1.45e-05 -0.000
models.itu837.rainfall_rate 51.500 -0.14 0.15 7.173693 7.173695 -1.55e-06 -0.000
models.itu837.rainfall_rate 51.500 -0.14 0.30 4.690336 4.690312 2.44e-05 0.001
models.itu837.rainfall_rate 51.500 -0.14 0.35 4.232586 4.232578 8.03e-06 0.000


Function rainfall_rate

The table below contains the results of testing function rainfall_rate. The test cases were extracted from spreadsheet ITURP837-7_rainfall_rate_R001.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.133  #  (°N)
lon = 101.7  # (°E)
p = 0.01  # (%)

# Make call to test-function rainfall_rate
itur_val = itur.models.itu837.rainfall_rate(lat=lat, lon=lon, p=p)

# Compute error with respect to value in ITU example file
ITU_example_val = 99.14811359999999  # (mm/hr)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu837.rainfall_rate
ITU-Rpy Function lat (°N) lon (°E) p (%) ITU Validation (mm/hr) ITU-Rpy Result (mm/hr) Absolute Error Relative Error
models.itu837.rainfall_rate 3.133 101.70 0.01 99.148114 99.148114 2.84e-14 0.000
models.itu837.rainfall_rate 22.900 -43.23 0.01 50.639304 50.639304 -2.84e-14 -0.000
models.itu837.rainfall_rate 23.000 30.00 0.01 0.000000 0.000000 0.00e+00 0.000
models.itu837.rainfall_rate 25.780 -80.22 0.01 78.298293 78.298293 -1.42e-13 -0.000
models.itu837.rainfall_rate 28.717 77.30 0.01 63.597246 63.597246 7.11e-14 0.000
models.itu837.rainfall_rate 33.940 18.43 0.01 27.134966 27.134966 3.55e-15 0.000
models.itu837.rainfall_rate 41.900 12.49 0.01 33.936232 33.936232 0.00e+00 0.000
models.itu837.rainfall_rate 51.500 -0.14 0.01 26.480520 26.480520 0.00e+00 0.000


Validation results ITU-R P.838-3

This page contains the validation examples for Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in prediction methods.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function rain_specific_attenuation

The table below contains the results of testing function rain_specific_attenuation. The test cases were extracted from spreadsheet ITURP838-3_rain_specific_attenuation.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
el = 31.07699124  # (°)
f = 14.25  # (GHz)
R = 26.480520000000002  # (mm/h)
tau = 0.0  #  t(°)

# Make call to test-function rain_specific_attenuation
itur_val = itur.models.itu838.rain_specific_attenuation(el=el, f=f, R=R, tau=tau)

# Compute error with respect to value in ITU example file
ITU_example_val = 1.58130839  # (dB/km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu838.rain_specific_attenuation
ITU-Rpy Function el (°) f (GHz) R (mm/h) tau t(°) ITU Validation (dB/km) ITU-Rpy Result (dB/km) Absolute Error Relative Error
models.itu838.rain_specific_attenuation 31.076991 14.25 26.480520 0.0 1.581308 1.581308 -3.66e-09 -0.000
models.itu838.rain_specific_attenuation 40.232036 14.25 33.936232 0.0 2.061732 2.061732 -1.25e-09 -0.000
models.itu838.rain_specific_attenuation 46.359693 14.25 27.135868 0.0 1.592084 1.592084 6.90e-10 0.000
models.itu838.rain_specific_attenuation 31.076991 14.25 26.480520 0.0 1.581308 1.581308 -3.66e-09 -0.000
models.itu838.rain_specific_attenuation 40.232036 14.25 33.936232 0.0 2.061732 2.061732 -1.25e-09 -0.000
models.itu838.rain_specific_attenuation 46.359693 14.25 27.135868 0.0 1.592084 1.592084 6.90e-10 0.000
models.itu838.rain_specific_attenuation 31.076991 14.25 26.480520 0.0 1.581308 1.581308 -3.66e-09 -0.000
models.itu838.rain_specific_attenuation 40.232036 14.25 33.936232 0.0 2.061732 2.061732 -1.25e-09 -0.000
models.itu838.rain_specific_attenuation 46.359693 14.25 27.135868 0.0 1.592084 1.592084 6.90e-10 0.000
models.itu838.rain_specific_attenuation 31.076991 14.25 26.480520 0.0 1.581308 1.581308 -3.66e-09 -0.000
models.itu838.rain_specific_attenuation 40.232036 14.25 33.936232 0.0 2.061732 2.061732 -1.25e-09 -0.000
models.itu838.rain_specific_attenuation 46.359693 14.25 27.135868 0.0 1.592084 1.592084 6.90e-10 0.000
models.itu838.rain_specific_attenuation 31.076991 29.00 26.480520 0.0 5.021802 5.021802 9.37e-10 0.000
models.itu838.rain_specific_attenuation 40.232036 29.00 33.936232 0.0 6.278460 6.278460 3.08e-10 0.000
models.itu838.rain_specific_attenuation 46.359693 29.00 27.135868 0.0 5.031355 5.031355 -3.63e-09 -0.000
models.itu838.rain_specific_attenuation 31.076991 29.00 26.480520 0.0 5.021802 5.021802 9.37e-10 0.000
models.itu838.rain_specific_attenuation 40.232036 29.00 33.936232 0.0 6.278460 6.278460 3.08e-10 0.000
models.itu838.rain_specific_attenuation 46.359693 29.00 27.135868 0.0 5.031355 5.031355 -3.63e-09 -0.000
models.itu838.rain_specific_attenuation 31.076991 29.00 26.480520 0.0 5.021802 5.021802 9.37e-10 0.000
models.itu838.rain_specific_attenuation 40.232036 29.00 33.936232 0.0 6.278460 6.278460 3.08e-10 0.000
models.itu838.rain_specific_attenuation 46.359693 29.00 27.135868 0.0 5.031355 5.031355 -3.63e-09 -0.000
models.itu838.rain_specific_attenuation 31.076991 29.00 26.480520 0.0 5.021802 5.021802 9.37e-10 0.000
models.itu838.rain_specific_attenuation 40.232036 29.00 33.936232 0.0 6.278460 6.278460 3.08e-10 0.000
models.itu838.rain_specific_attenuation 46.359693 29.00 27.135868 0.0 5.031355 5.031355 -3.63e-09 -0.000
models.itu838.rain_specific_attenuation 22.278335 14.25 50.639304 0.0 3.321396 3.321396 2.32e-09 0.000
models.itu838.rain_specific_attenuation 52.678985 14.25 78.299499 0.0 5.115035 5.115035 -3.10e-09 -0.000
models.itu838.rain_specific_attenuation 22.278335 14.25 50.639304 0.0 3.321396 3.321396 2.32e-09 0.000
models.itu838.rain_specific_attenuation 52.678985 14.25 78.299499 0.0 5.115035 5.115035 -3.10e-09 -0.000
models.itu838.rain_specific_attenuation 22.278335 14.25 50.639304 0.0 3.321396 3.321396 2.32e-09 0.000
models.itu838.rain_specific_attenuation 52.678985 14.25 78.299499 0.0 5.115035 5.115035 -3.10e-09 -0.000
models.itu838.rain_specific_attenuation 22.278335 14.25 50.639304 0.0 3.321396 3.321396 2.32e-09 0.000
models.itu838.rain_specific_attenuation 52.678985 14.25 78.299499 0.0 5.115035 5.115035 -3.10e-09 -0.000
models.itu838.rain_specific_attenuation 22.278335 29.00 50.639304 0.0 9.424302 9.424302 1.87e-09 0.000
models.itu838.rain_specific_attenuation 52.678985 29.00 78.299499 0.0 13.592901 13.592901 -3.74e-09 -0.000
models.itu838.rain_specific_attenuation 22.278335 29.00 50.639304 0.0 9.424302 9.424302 1.87e-09 0.000
models.itu838.rain_specific_attenuation 52.678985 29.00 78.299499 0.0 13.592901 13.592901 -3.74e-09 -0.000
models.itu838.rain_specific_attenuation 22.278335 29.00 50.639304 0.0 9.424302 9.424302 1.87e-09 0.000
models.itu838.rain_specific_attenuation 52.678985 29.00 78.299499 0.0 13.592901 13.592901 -3.74e-09 -0.000
models.itu838.rain_specific_attenuation 22.278335 29.00 50.639304 0.0 9.424302 9.424302 1.87e-09 0.000
models.itu838.rain_specific_attenuation 52.678985 29.00 78.299499 0.0 13.592901 13.592901 -3.74e-09 -0.000
models.itu838.rain_specific_attenuation 48.241171 14.25 63.626681 90.0 3.729013 3.729013 4.82e-09 0.000
models.itu838.rain_specific_attenuation 85.804596 14.25 99.135590 90.0 6.340646 6.340646 -2.31e-10 -0.000
models.itu838.rain_specific_attenuation 20.143358 14.25 42.910072 90.0 2.350323 2.350323 -3.09e-09 -0.000
models.itu838.rain_specific_attenuation 48.241171 14.25 63.626681 90.0 3.729013 3.729013 4.82e-09 0.000
models.itu838.rain_specific_attenuation 85.804596 14.25 99.135590 90.0 6.340646 6.340646 -2.31e-10 -0.000
models.itu838.rain_specific_attenuation 20.143358 14.25 42.910072 90.0 2.350323 2.350323 -3.09e-09 -0.000
models.itu838.rain_specific_attenuation 48.241171 14.25 63.626681 90.0 3.729013 3.729013 4.82e-09 0.000
models.itu838.rain_specific_attenuation 85.804596 14.25 99.135590 90.0 6.340646 6.340646 -2.31e-10 -0.000
models.itu838.rain_specific_attenuation 20.143358 14.25 42.910072 90.0 2.350323 2.350323 -3.09e-09 -0.000
models.itu838.rain_specific_attenuation 48.241171 14.25 63.626681 90.0 3.729013 3.729013 4.82e-09 0.000
models.itu838.rain_specific_attenuation 85.804596 14.25 99.135590 90.0 6.340646 6.340646 -2.31e-10 -0.000
models.itu838.rain_specific_attenuation 20.143358 14.25 42.910072 90.0 2.350323 2.350323 -3.09e-09 -0.000
models.itu838.rain_specific_attenuation 48.241171 29.00 63.626681 90.0 10.286992 10.286992 3.92e-09 0.000
models.itu838.rain_specific_attenuation 85.804596 29.00 99.135590 90.0 16.318369 16.318369 -2.17e-09 -0.000
models.itu838.rain_specific_attenuation 20.143358 29.00 42.910072 90.0 6.833646 6.833646 2.75e-09 0.000
models.itu838.rain_specific_attenuation 48.241171 29.00 63.626681 90.0 10.286992 10.286992 3.92e-09 0.000
models.itu838.rain_specific_attenuation 85.804596 29.00 99.135590 90.0 16.318369 16.318369 -2.17e-09 -0.000
models.itu838.rain_specific_attenuation 20.143358 29.00 42.910072 90.0 6.833646 6.833646 2.75e-09 0.000
models.itu838.rain_specific_attenuation 48.241171 29.00 63.626681 90.0 10.286992 10.286992 3.92e-09 0.000
models.itu838.rain_specific_attenuation 85.804596 29.00 99.135590 90.0 16.318369 16.318369 -2.17e-09 -0.000
models.itu838.rain_specific_attenuation 20.143358 29.00 42.910072 90.0 6.833646 6.833646 2.75e-09 0.000
models.itu838.rain_specific_attenuation 48.241171 29.00 63.626681 90.0 10.286992 10.286992 3.92e-09 0.000
models.itu838.rain_specific_attenuation 85.804596 29.00 99.135590 90.0 16.318369 16.318369 -2.17e-09 -0.000
models.itu838.rain_specific_attenuation 20.143358 29.00 42.910072 90.0 6.833646 6.833646 2.75e-09 0.000


Validation results ITU-R P.839-4

This page contains the validation examples for Recommendation ITU-R P.839-4: Rain height model for prediction methods.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function isoterm_0

The table below contains the results of testing function isoterm_0. The test cases were extracted from spreadsheet ITURP839-4_rain_height.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.133  #  (°N)
lon = 101.7  # (°E)

# Make call to test-function isoterm_0
itur_val = itur.models.itu839.isoterm_0(lat=lat, lon=lon)

# Compute error with respect to value in ITU example file
ITU_example_val = 4.5979744  # (km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu839.isoterm_0
ITU-Rpy Function lat (°N) lon (°E) ITU Validation (km) ITU-Rpy Result (km) Absolute Error Relative Error
models.itu839.isoterm_0 3.133 101.70 4.597974 4.597974 8.88e-16 0.000
models.itu839.isoterm_0 22.900 -43.23 3.798779 3.798779 3.33e-09 0.000
models.itu839.isoterm_0 23.000 30.00 4.168000 4.168000 0.00e+00 0.000
models.itu839.isoterm_0 25.780 -80.22 4.209461 4.209461 -3.33e-09 -0.000
models.itu839.isoterm_0 28.717 77.30 4.898204 4.898204 -4.44e-09 -0.000
models.itu839.isoterm_0 33.940 18.43 2.203303 2.203303 4.44e-09 0.000
models.itu839.isoterm_0 41.900 12.49 2.687493 2.687493 -3.33e-09 -0.000
models.itu839.isoterm_0 51.500 -0.14 2.092733 2.092733 -3.33e-09 -0.000


Function rain_height

The table below contains the results of testing function rain_height. The test cases were extracted from spreadsheet ITURP839-4_rain_height.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.133  #  (°N)
lon = 101.7  # (°E)

# Make call to test-function rain_height
itur_val = itur.models.itu839.rain_height(lat=lat, lon=lon)

# Compute error with respect to value in ITU example file
ITU_example_val = 4.9579744  # (km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu839.rain_height
ITU-Rpy Function lat (°N) lon (°E) ITU Validation (km) ITU-Rpy Result (km) Absolute Error Relative Error
models.itu839.rain_height 3.133 101.70 4.957974 4.957974 8.88e-16 0.000
models.itu839.rain_height 22.900 -43.23 4.158779 4.158779 3.33e-09 0.000
models.itu839.rain_height 23.000 30.00 4.528000 4.528000 -8.88e-16 -0.000
models.itu839.rain_height 25.780 -80.22 4.569461 4.569461 -3.33e-09 -0.000
models.itu839.rain_height 28.717 77.30 5.258204 5.258204 -4.44e-09 -0.000
models.itu839.rain_height 33.940 18.43 2.563303 2.563303 4.44e-09 0.000
models.itu839.rain_height 41.900 12.49 3.047493 3.047493 -3.33e-09 -0.000
models.itu839.rain_height 51.500 -0.14 2.452733 2.452733 -3.33e-09 -0.000


Validation results ITU-R P.840-8

This page contains the validation examples for Recommendation ITU-R P.840-8: Attenuation due to clouds and fog.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function columnar_content_reduced_liquid

The table below contains the results of testing function columnar_content_reduced_liquid. The test cases were extracted from spreadsheet ITURP840-8_columnar_content_reduced_liquid.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.13  #  (°N)
lon = 101.7  # (°E)
p = 0.2  # (%)

# Make call to test-function columnar_content_reduced_liquid
itur_val = itur.models.itu840.columnar_content_reduced_liquid(lat=lat, lon=lon, p=p)

# Compute error with respect to value in ITU example file
ITU_example_val = 3.70165196  # (kg/m2)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu840.columnar_content_reduced_liquid
ITU-Rpy Function lat (°N) lon (°E) p (%) ITU Validation (kg/m2) ITU-Rpy Result (kg/m2) Absolute Error Relative Error
models.itu840.columnar_content_reduced_liquid 3.130 101.70 0.20 3.701652 3.701652 -4.09e-09 -0.000
models.itu840.columnar_content_reduced_liquid 3.130 101.70 0.30 3.631154 3.631154 -3.73e-09 -0.000
models.itu840.columnar_content_reduced_liquid 3.130 101.70 0.50 3.511788 3.511788 3.47e-09 0.000
models.itu840.columnar_content_reduced_liquid 3.130 101.70 1.00 3.336166 3.336166 1.02e-09 0.000
models.itu840.columnar_content_reduced_liquid 3.133 101.70 0.10 3.805251 3.805251 3.56e-11 0.000
models.itu840.columnar_content_reduced_liquid 3.133 101.70 0.15 3.744512 3.744512 3.95e-10 0.000
models.itu840.columnar_content_reduced_liquid 3.133 101.70 0.30 3.630958 3.630958 2.67e-11 0.000
models.itu840.columnar_content_reduced_liquid 3.133 101.70 0.35 3.594946 3.594946 2.16e-11 0.000
models.itu840.columnar_content_reduced_liquid 9.050 38.70 0.20 1.427798 1.427798 4.00e-09 0.000
models.itu840.columnar_content_reduced_liquid 9.050 38.70 0.30 1.393227 1.393227 6.67e-10 0.000
models.itu840.columnar_content_reduced_liquid 9.050 38.70 0.50 1.329746 1.329746 -8.89e-10 -0.000
models.itu840.columnar_content_reduced_liquid 9.050 38.70 1.00 1.217702 1.217702 6.67e-10 0.000
models.itu840.columnar_content_reduced_liquid 22.900 -43.23 0.10 2.829932 2.829932 -1.85e-10 -0.000
models.itu840.columnar_content_reduced_liquid 22.900 -43.23 0.15 2.615428 2.615428 3.33e-10 0.000
models.itu840.columnar_content_reduced_liquid 22.900 -43.23 0.20 2.463236 2.463236 4.44e-11 0.000
models.itu840.columnar_content_reduced_liquid 22.900 -43.23 0.30 2.152561 2.152561 -1.08e-09 -0.000
models.itu840.columnar_content_reduced_liquid 22.900 -43.23 0.30 2.152561 2.152561 -8.15e-11 -0.000
models.itu840.columnar_content_reduced_liquid 22.900 -43.23 0.35 2.030425 2.030425 2.60e-10 0.000
models.itu840.columnar_content_reduced_liquid 22.900 -43.23 0.50 1.747825 1.747825 -3.48e-09 -0.000
models.itu840.columnar_content_reduced_liquid 22.900 -43.23 1.00 1.104449 1.104449 2.56e-09 0.000
models.itu840.columnar_content_reduced_liquid 23.000 30.00 0.10 0.443821 0.443821 -3.33e-10 -0.000
models.itu840.columnar_content_reduced_liquid 23.000 30.00 0.15 0.367759 0.367759 2.17e-10 0.000
models.itu840.columnar_content_reduced_liquid 23.000 30.00 0.30 0.252496 0.252496 -3.70e-10 -0.000
models.itu840.columnar_content_reduced_liquid 23.000 30.00 0.35 0.230477 0.230477 3.46e-10 0.000
models.itu840.columnar_content_reduced_liquid 25.780 -80.22 0.10 3.529275 3.529275 -2.79e-10 -0.000
models.itu840.columnar_content_reduced_liquid 25.780 -80.22 0.15 3.368053 3.368053 -4.33e-10 -0.000
models.itu840.columnar_content_reduced_liquid 25.780 -80.22 0.20 3.253664 3.253664 1.87e-09 0.000
models.itu840.columnar_content_reduced_liquid 25.780 -80.22 0.30 3.090031 3.090031 3.33e-09 0.000
models.itu840.columnar_content_reduced_liquid 25.780 -80.22 0.30 3.090031 3.090031 3.33e-10 0.000
models.itu840.columnar_content_reduced_liquid 25.780 -80.22 0.35 2.982802 2.982802 3.91e-10 0.000
models.itu840.columnar_content_reduced_liquid 25.780 -80.22 0.50 2.734695 2.734695 1.38e-09 0.000
models.itu840.columnar_content_reduced_liquid 25.780 -80.22 1.00 2.279782 2.279782 2.55e-09 0.000
models.itu840.columnar_content_reduced_liquid 28.717 77.30 0.10 4.230726 4.230726 3.11e-10 0.000
models.itu840.columnar_content_reduced_liquid 28.717 77.30 0.15 4.004952 4.004952 4.59e-10 0.000
models.itu840.columnar_content_reduced_liquid 28.717 77.30 0.30 3.641943 3.641943 -2.65e-10 -0.000
models.itu840.columnar_content_reduced_liquid 28.717 77.30 0.35 3.550068 3.550068 -3.85e-10 -0.000
models.itu840.columnar_content_reduced_liquid 28.720 77.30 0.20 3.843565 3.843565 -6.32e-10 -0.000
models.itu840.columnar_content_reduced_liquid 28.720 77.30 0.30 3.640732 3.640732 3.95e-09 0.000
models.itu840.columnar_content_reduced_liquid 28.720 77.30 0.50 3.336166 3.336166 1.80e-09 0.000
models.itu840.columnar_content_reduced_liquid 28.720 77.30 1.00 2.749811 2.749811 -4.63e-09 -0.000
models.itu840.columnar_content_reduced_liquid 33.940 18.43 0.10 1.476286 1.476286 3.88e-10 0.000
models.itu840.columnar_content_reduced_liquid 33.940 18.43 0.15 1.342662 1.342662 -2.59e-11 -0.000
models.itu840.columnar_content_reduced_liquid 33.940 18.43 0.20 1.247855 1.247855 -2.32e-09 -0.000
models.itu840.columnar_content_reduced_liquid 33.940 18.43 0.30 1.117630 1.117630 6.43e-10 0.000
models.itu840.columnar_content_reduced_liquid 33.940 18.43 0.30 1.117630 1.117630 -3.57e-10 -0.000
models.itu840.columnar_content_reduced_liquid 33.940 18.43 0.35 1.061279 1.061279 -4.82e-10 -0.000
models.itu840.columnar_content_reduced_liquid 33.940 18.43 0.50 0.930893 0.930893 -4.82e-09 -0.000
models.itu840.columnar_content_reduced_liquid 33.940 18.43 1.00 0.730721 0.730721 4.04e-10 0.000
models.itu840.columnar_content_reduced_liquid 41.900 12.49 0.10 1.498460 1.498460 -1.43e-10 -0.000
models.itu840.columnar_content_reduced_liquid 41.900 12.49 0.15 1.411412 1.411412 4.24e-11 0.000
models.itu840.columnar_content_reduced_liquid 41.900 12.49 0.20 1.349650 1.349650 -2.55e-09 -0.000
models.itu840.columnar_content_reduced_liquid 41.900 12.49 0.30 1.254176 1.254176 2.37e-09 0.000
models.itu840.columnar_content_reduced_liquid 41.900 12.49 0.30 1.254176 1.254176 3.65e-10 0.000
models.itu840.columnar_content_reduced_liquid 41.900 12.49 0.35 1.214240 1.214240 -1.65e-10 -0.000
models.itu840.columnar_content_reduced_liquid 41.900 12.49 0.50 1.121834 1.121834 4.17e-09 0.000
models.itu840.columnar_content_reduced_liquid 41.900 12.49 1.00 0.914672 0.914672 -4.23e-09 -0.000
models.itu840.columnar_content_reduced_liquid 51.500 -0.14 0.10 1.903298 1.903298 3.83e-10 0.000
models.itu840.columnar_content_reduced_liquid 51.500 -0.14 0.15 1.803804 1.803804 9.72e-11 0.000
models.itu840.columnar_content_reduced_liquid 51.500 -0.14 0.20 1.733211 1.733211 -1.19e-09 -0.000
models.itu840.columnar_content_reduced_liquid 51.500 -0.14 0.30 1.641289 1.641289 3.01e-09 0.000
models.itu840.columnar_content_reduced_liquid 51.500 -0.14 0.30 1.641289 1.641289 1.23e-11 0.000
models.itu840.columnar_content_reduced_liquid 51.500 -0.14 0.35 1.593721 1.593721 1.46e-10 0.000
models.itu840.columnar_content_reduced_liquid 51.500 -0.14 0.50 1.483659 1.483659 2.96e-09 0.000
models.itu840.columnar_content_reduced_liquid 51.500 -0.14 1.00 1.263286 1.263286 4.20e-10 0.000


Function cloud_attenuation

The table below contains the results of testing function cloud_attenuation. The test cases were extracted from spreadsheet ITURP840-8_cloud_attenuation.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 51.5  #  (°N)
lon = -0.14  # (°E)
f = 14.25  # (GHz)
el = 31.07699124  # (°)
p = 1.0  # (%)

# Make call to test-function cloud_attenuation
itur_val = itur.models.itu840.cloud_attenuation(lat=lat, lon=lon, f=f, el=el, p=p)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.45516982  # (dB)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu840.cloud_attenuation
ITU-Rpy Function lat (°N) lon (°E) f (GHz) el (°) p (%) ITU Validation (dB) ITU-Rpy Result (dB) Absolute Error Relative Error
models.itu840.cloud_attenuation 51.50 -0.14 14.25 31.076991 1.0 0.455170 0.455170 -4.40e-09 -0.000
models.itu840.cloud_attenuation 41.90 12.49 14.25 40.232036 1.0 0.263385 0.263385 -1.16e-09 -0.000
models.itu840.cloud_attenuation 33.94 18.43 14.25 46.359693 1.0 0.187794 0.187794 1.50e-09 0.000
models.itu840.cloud_attenuation 51.50 -0.14 14.25 31.076991 0.5 0.534571 0.534571 1.78e-09 0.000
models.itu840.cloud_attenuation 41.90 12.49 14.25 40.232036 0.5 0.323039 0.323039 4.83e-09 0.000
models.itu840.cloud_attenuation 33.94 18.43 14.25 46.359693 0.5 0.239238 0.239238 3.21e-09 0.000
models.itu840.cloud_attenuation 51.50 -0.14 14.25 31.076991 0.3 0.591367 0.591367 -4.62e-10 -0.000
models.itu840.cloud_attenuation 41.90 12.49 14.25 40.232036 0.3 0.361147 0.361147 -3.25e-09 -0.000
models.itu840.cloud_attenuation 33.94 18.43 14.25 46.359693 0.3 0.287229 0.287229 -2.87e-09 -0.000
models.itu840.cloud_attenuation 51.50 -0.14 14.25 31.076991 0.2 0.624487 0.624487 1.33e-09 0.000
models.itu840.cloud_attenuation 41.90 12.49 14.25 40.232036 0.2 0.388640 0.388640 -3.95e-09 -0.000
models.itu840.cloud_attenuation 33.94 18.43 14.25 46.359693 0.2 0.320697 0.320697 1.84e-09 0.000
models.itu840.cloud_attenuation 51.50 -0.14 29.00 31.076991 1.0 1.772469 1.772469 -2.75e-09 -0.000
models.itu840.cloud_attenuation 41.90 12.49 29.00 40.232036 1.0 1.025643 1.025643 -3.42e-09 -0.000
models.itu840.cloud_attenuation 33.94 18.43 29.00 46.359693 1.0 0.731286 0.731286 3.54e-09 0.000
models.itu840.cloud_attenuation 51.50 -0.14 29.00 31.076991 0.5 2.081665 2.081665 1.03e-09 0.000
models.itu840.cloud_attenuation 41.90 12.49 29.00 40.232036 0.5 1.257939 1.257939 2.14e-09 0.000
models.itu840.cloud_attenuation 33.94 18.43 29.00 46.359693 0.5 0.931612 0.931612 1.90e-09 0.000
models.itu840.cloud_attenuation 51.50 -0.14 29.00 31.076991 0.3 2.302831 2.302831 -2.05e-10 -0.000
models.itu840.cloud_attenuation 41.90 12.49 29.00 40.232036 0.3 1.406338 1.406338 4.26e-11 0.000
models.itu840.cloud_attenuation 33.94 18.43 29.00 46.359693 0.3 1.118494 1.118494 -4.99e-09 -0.000
models.itu840.cloud_attenuation 51.50 -0.14 29.00 31.076991 0.2 2.431803 2.431803 -3.04e-09 -0.000
models.itu840.cloud_attenuation 41.90 12.49 29.00 40.232036 0.2 1.513395 1.513395 4.73e-09 0.000
models.itu840.cloud_attenuation 33.94 18.43 29.00 46.359693 0.2 1.248820 1.248820 -1.27e-09 -0.000
models.itu840.cloud_attenuation 22.90 -43.23 14.25 22.278335 1.0 0.541833 0.541833 -1.26e-09 -0.000
models.itu840.cloud_attenuation 25.78 -80.22 14.25 52.678985 1.0 0.533175 0.533175 -2.16e-09 -0.000
models.itu840.cloud_attenuation 22.90 -43.23 14.25 22.278335 0.5 0.857468 0.857468 -4.54e-09 -0.000
models.itu840.cloud_attenuation 25.78 -80.22 14.25 52.678985 0.5 0.639566 0.639566 -3.07e-09 -0.000
models.itu840.cloud_attenuation 22.90 -43.23 14.25 22.278335 0.3 1.056028 1.056028 -2.62e-09 -0.000
models.itu840.cloud_attenuation 25.78 -80.22 14.25 52.678985 0.3 0.722669 0.722669 1.78e-09 0.000
models.itu840.cloud_attenuation 22.90 -43.23 14.25 22.278335 0.2 1.208442 1.208442 5.78e-10 0.000
models.itu840.cloud_attenuation 25.78 -80.22 14.25 52.678985 0.2 0.760938 0.760938 3.84e-09 0.000
models.itu840.cloud_attenuation 22.90 -43.23 29.00 22.278335 1.0 2.109942 2.109942 -3.44e-09 -0.000
models.itu840.cloud_attenuation 25.78 -80.22 29.00 52.678985 1.0 2.076228 2.076228 2.71e-09 0.000
models.itu840.cloud_attenuation 22.90 -43.23 29.00 22.278335 0.5 3.339051 3.339051 -3.20e-09 -0.000
models.itu840.cloud_attenuation 25.78 -80.22 29.00 52.678985 0.5 2.490524 2.490524 -2.60e-09 -0.000
models.itu840.cloud_attenuation 22.90 -43.23 29.00 22.278335 0.3 4.112259 4.112259 5.50e-10 0.000
models.itu840.cloud_attenuation 25.78 -80.22 29.00 52.678985 0.3 2.814133 2.814133 -3.98e-09 -0.000
models.itu840.cloud_attenuation 22.90 -43.23 29.00 22.278335 0.2 4.705774 4.705774 -1.21e-09 -0.000
models.itu840.cloud_attenuation 25.78 -80.22 29.00 52.678985 0.2 2.963156 2.963156 -2.75e-09 -0.000
models.itu840.cloud_attenuation 28.72 77.30 14.25 48.241171 1.0 0.685601 0.685601 -4.38e-09 -0.000
models.itu840.cloud_attenuation 3.13 101.70 14.25 85.804596 1.0 0.622148 0.622148 4.81e-09 0.000
models.itu840.cloud_attenuation 9.05 38.70 14.25 20.143358 1.0 0.657652 0.657652 2.05e-09 0.000
models.itu840.cloud_attenuation 28.72 77.30 14.25 48.241171 0.5 0.831794 0.831794 2.57e-09 0.000
models.itu840.cloud_attenuation 3.13 101.70 14.25 85.804596 0.5 0.654899 0.654899 -2.35e-09 -0.000
models.itu840.cloud_attenuation 9.05 38.70 14.25 20.143358 0.5 0.718165 0.718165 -1.13e-09 -0.000
models.itu840.cloud_attenuation 28.72 77.30 14.25 48.241171 0.3 0.907731 0.907731 -3.08e-09 -0.000
models.itu840.cloud_attenuation 3.13 101.70 14.25 85.804596 0.3 0.677159 0.677159 -3.75e-09 -0.000
models.itu840.cloud_attenuation 9.05 38.70 14.25 20.143358 0.3 0.752449 0.752449 2.71e-09 0.000
models.itu840.cloud_attenuation 28.72 77.30 14.25 48.241171 0.2 0.958302 0.958302 2.14e-09 0.000
models.itu840.cloud_attenuation 3.13 101.70 14.25 85.804596 0.2 0.690306 0.690306 -1.60e-09 -0.000
models.itu840.cloud_attenuation 9.05 38.70 14.25 20.143358 0.2 0.771120 0.771120 1.80e-09 0.000
models.itu840.cloud_attenuation 28.72 77.30 29.00 48.241171 1.0 2.669786 2.669786 -4.93e-09 -0.000
models.itu840.cloud_attenuation 3.13 101.70 29.00 85.804596 1.0 2.422697 2.422697 -1.13e-09 -0.000
models.itu840.cloud_attenuation 9.05 38.70 29.00 20.143358 1.0 2.560952 2.560952 3.84e-09 0.000
models.itu840.cloud_attenuation 28.72 77.30 29.00 48.241171 0.5 3.239076 3.239076 -3.17e-09 -0.000
models.itu840.cloud_attenuation 3.13 101.70 29.00 85.804596 0.5 2.550232 2.550232 3.09e-09 0.000
models.itu840.cloud_attenuation 9.05 38.70 29.00 20.143358 0.5 2.796592 2.796592 -2.58e-09 -0.000
models.itu840.cloud_attenuation 28.72 77.30 29.00 48.241171 0.3 3.534779 3.534779 3.05e-09 0.000
models.itu840.cloud_attenuation 3.13 101.70 29.00 85.804596 0.3 2.636914 2.636914 -1.37e-09 -0.000
models.itu840.cloud_attenuation 9.05 38.70 29.00 20.143358 0.3 2.930099 2.930099 -2.97e-09 -0.000
models.itu840.cloud_attenuation 28.72 77.30 29.00 48.241171 0.2 3.731709 3.731709 -1.49e-09 -0.000
models.itu840.cloud_attenuation 3.13 101.70 29.00 85.804596 0.2 2.688109 2.688109 3.06e-09 0.000
models.itu840.cloud_attenuation 9.05 38.70 29.00 20.143358 0.2 3.002805 3.002805 -3.77e-09 -0.000


Validation results ITU-R P.1510-1

This page contains the validation examples for Recommendation ITU-R P.1510-1: Mean surface temperature.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function surface_mean_temperature

The table below contains the results of testing function surface_mean_temperature. The test cases were extracted from spreadsheet ITURP1510-1_temperature.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 51.5  #  (°N)
lon = -0.14  # (°E)

# Make call to test-function surface_mean_temperature
itur_val = itur.models.itu1510.surface_mean_temperature(lat=lat, lon=lon)

# Compute error with respect to value in ITU example file
ITU_example_val = 283.6108756  # (K)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu1510.surface_mean_temperature
ITU-Rpy Function lat (°N) lon (°E) ITU Validation (K) ITU-Rpy Result (K) Absolute Error Relative Error
models.itu1510.surface_mean_temperature 51.500 -0.14 283.610876 283.610876 4.44e-08 0.000
models.itu1510.surface_mean_temperature 41.900 12.49 288.089737 288.089737 1.11e-08 0.000
models.itu1510.surface_mean_temperature 33.940 18.43 293.369680 293.369679 3.33e-08 0.000
models.itu1510.surface_mean_temperature 51.500 -0.14 283.610876 283.610876 4.44e-08 0.000
models.itu1510.surface_mean_temperature 41.900 12.49 288.089737 288.089737 1.11e-08 0.000
models.itu1510.surface_mean_temperature 33.940 18.43 293.369680 293.369679 3.33e-08 0.000
models.itu1510.surface_mean_temperature 51.500 -0.14 283.610876 283.610876 4.44e-08 0.000
models.itu1510.surface_mean_temperature 41.900 12.49 288.089737 288.089737 1.11e-08 0.000
models.itu1510.surface_mean_temperature 33.940 18.43 293.369680 293.369679 3.33e-08 0.000
models.itu1510.surface_mean_temperature 51.500 -0.14 283.610876 283.610876 4.44e-08 0.000
models.itu1510.surface_mean_temperature 41.900 12.49 288.089737 288.089737 1.11e-08 0.000
models.itu1510.surface_mean_temperature 33.940 18.43 293.369680 293.369679 3.33e-08 0.000
models.itu1510.surface_mean_temperature 51.500 -0.14 283.610876 283.610876 4.44e-08 0.000
models.itu1510.surface_mean_temperature 41.900 12.49 288.089737 288.089737 1.11e-08 0.000
models.itu1510.surface_mean_temperature 33.940 18.43 293.369680 293.369679 3.33e-08 0.000
models.itu1510.surface_mean_temperature 51.500 -0.14 283.610876 283.610876 4.44e-08 0.000
models.itu1510.surface_mean_temperature 41.900 12.49 288.089737 288.089737 1.11e-08 0.000
models.itu1510.surface_mean_temperature 33.940 18.43 293.369680 293.369679 3.33e-08 0.000
models.itu1510.surface_mean_temperature 51.500 -0.14 283.610876 283.610876 4.44e-08 0.000
models.itu1510.surface_mean_temperature 41.900 12.49 288.089737 288.089737 1.11e-08 0.000
models.itu1510.surface_mean_temperature 33.940 18.43 293.369680 293.369679 3.33e-08 0.000
models.itu1510.surface_mean_temperature 51.500 -0.14 283.610876 283.610876 4.44e-08 0.000
models.itu1510.surface_mean_temperature 41.900 12.49 288.089737 288.089737 1.11e-08 0.000
models.itu1510.surface_mean_temperature 33.940 18.43 293.369680 293.369679 3.33e-08 0.000
models.itu1510.surface_mean_temperature 22.900 -43.23 297.453541 297.453541 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 25.780 -80.22 297.574654 297.574654 3.33e-08 0.000
models.itu1510.surface_mean_temperature 22.900 -43.23 297.453541 297.453541 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 25.780 -80.22 297.574654 297.574654 3.33e-08 0.000
models.itu1510.surface_mean_temperature 22.900 -43.23 297.453541 297.453541 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 25.780 -80.22 297.574654 297.574654 3.33e-08 0.000
models.itu1510.surface_mean_temperature 22.900 -43.23 297.453541 297.453541 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 25.780 -80.22 297.574654 297.574654 3.33e-08 0.000
models.itu1510.surface_mean_temperature 22.900 -43.23 297.453541 297.453541 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 25.780 -80.22 297.574654 297.574654 3.33e-08 0.000
models.itu1510.surface_mean_temperature 22.900 -43.23 297.453541 297.453541 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 25.780 -80.22 297.574654 297.574654 3.33e-08 0.000
models.itu1510.surface_mean_temperature 22.900 -43.23 297.453541 297.453541 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 25.780 -80.22 297.574654 297.574654 3.33e-08 0.000
models.itu1510.surface_mean_temperature 22.900 -43.23 297.453541 297.453541 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 25.780 -80.22 297.574654 297.574654 3.33e-08 0.000
models.itu1510.surface_mean_temperature 28.717 77.30 298.058499 298.058499 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 3.133 101.70 299.605408 299.605407 3.33e-08 0.000
models.itu1510.surface_mean_temperature 9.050 38.70 290.210093 290.210093 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 28.717 77.30 298.058499 298.058499 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 3.133 101.70 299.605408 299.605407 3.33e-08 0.000
models.itu1510.surface_mean_temperature 9.050 38.70 290.210093 290.210093 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 28.717 77.30 298.058499 298.058499 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 3.133 101.70 299.605408 299.605407 3.33e-08 0.000
models.itu1510.surface_mean_temperature 9.050 38.70 290.210093 290.210093 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 28.717 77.30 298.058499 298.058499 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 3.133 101.70 299.605408 299.605407 3.33e-08 0.000
models.itu1510.surface_mean_temperature 9.050 38.70 290.210093 290.210093 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 28.717 77.30 298.058499 298.058499 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 3.133 101.70 299.605408 299.605407 3.33e-08 0.000
models.itu1510.surface_mean_temperature 9.050 38.70 290.210093 290.210093 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 28.717 77.30 298.058499 298.058499 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 3.133 101.70 299.605408 299.605407 3.33e-08 0.000
models.itu1510.surface_mean_temperature 9.050 38.70 290.210093 290.210093 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 28.717 77.30 298.058499 298.058499 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 3.133 101.70 299.605408 299.605407 3.33e-08 0.000
models.itu1510.surface_mean_temperature 9.050 38.70 290.210093 290.210093 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 28.717 77.30 298.058499 298.058499 -3.33e-08 -0.000
models.itu1510.surface_mean_temperature 3.133 101.70 299.605408 299.605407 3.33e-08 0.000
models.itu1510.surface_mean_temperature 9.050 38.70 290.210093 290.210093 -3.33e-08 -0.000


Validation results ITU-R P.1511-1

This page contains the validation examples for Recommendation ITU-R P.1511-1: Topography for Earth-to-space propagation modelling.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function topographic_altitude

The table below contains the results of testing function topographic_altitude. The test cases were extracted from spreadsheet ITURP1511-1_topographic_altitude.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.133  #  (°N)
lon = 101.7  # (°E)

# Make call to test-function topographic_altitude
itur_val = itur.models.itu1511.topographic_altitude(lat=lat, lon=lon)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.23610446  # (km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu1511.topographic_altitude
ITU-Rpy Function lat (°N) lon (°E) ITU Validation (km) ITU-Rpy Result (km) Absolute Error Relative Error
models.itu1511.topographic_altitude 3.133 101.70 0.051251 0.051246 5.67e-06 0.011
models.itu1511.topographic_altitude 22.900 -43.23 0.000000 0.000000 -1.00e-09 0.000
models.itu1511.topographic_altitude 23.000 30.00 0.187594 0.187595 -1.35e-06 -0.001
models.itu1511.topographic_altitude 25.780 -80.22 0.008617 0.008617 4.57e-07 0.005
models.itu1511.topographic_altitude 28.717 77.30 0.209384 0.209383 4.70e-07 0.000
models.itu1511.topographic_altitude 33.940 18.43 0.000000 0.000000 -1.00e-09 0.000
models.itu1511.topographic_altitude 41.900 12.49 0.046123 0.046124 -1.17e-06 -0.003
models.itu1511.topographic_altitude 51.500 -0.14 0.031383 0.031380 2.67e-06 0.009
models.itu1511.topographic_altitude 9.050 38.70 2.539862 2.539859 2.45e-06 0.000


Validation results ITU-R P.1511-2

This page contains the validation examples for Recommendation ITU-R P.1511-2: Topography for Earth-to-space propagation modelling.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function topographic_altitude

The table below contains the results of testing function topographic_altitude. The test cases were extracted from spreadsheet ITURP1511-2_topographic_altitude.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
lat = 3.133  #  (°N)
lon = 101.7  # (°E)

# Make call to test-function topographic_altitude
itur_val = itur.models.itu1511.topographic_altitude(lat=lat, lon=lon)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.05125146  # (km)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu1511.topographic_altitude
ITU-Rpy Function lat (°N) lon (°E) ITU Validation (km) ITU-Rpy Result (km) Absolute Error Relative Error
models.itu1511.topographic_altitude 3.133 101.70 0.051251 0.051246 5.67e-06 0.011
models.itu1511.topographic_altitude 22.900 -43.23 0.000000 0.000000 -1.00e-09 0.000
models.itu1511.topographic_altitude 23.000 30.00 0.187594 0.187595 -1.35e-06 -0.001
models.itu1511.topographic_altitude 25.780 -80.22 0.008617 0.008617 4.57e-07 0.005
models.itu1511.topographic_altitude 28.717 77.30 0.209384 0.209383 4.70e-07 0.000
models.itu1511.topographic_altitude 33.940 18.43 0.000000 0.000000 -1.00e-09 0.000
models.itu1511.topographic_altitude 41.900 12.49 0.046123 0.046124 -1.17e-06 -0.003
models.itu1511.topographic_altitude 51.500 -0.14 0.031383 0.031380 2.67e-06 0.009
models.itu1511.topographic_altitude 9.050 38.70 2.539862 2.539859 2.45e-06 0.000


Validation results ITU-R P.1623-1

This page contains the validation examples for Recommendation ITU-R P.1623-1: Prediction method of fade dynamics on Earth-space paths.

All test cases were extracted from the ITU Validation examples file (rev 5.1).

Function fade_duration_number_fades

The table below contains the results of testing function fade_duration_number_fades. The test cases were extracted from spreadsheet ITURP1623-1_number_of_fades.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
D = 30.0  # (s)
A = 12.51  # (dB)
el = 20.33  # (°)
f = 30.0  # (GHz)
T_tot = 315576.0  # (s)

# Make call to test-function fade_duration_number_fades
itur_val = itur.models.itu1623.fade_duration_number_fades(D=D, A=A, el=el, f=f, T_tot=T_tot)

# Compute error with respect to value in ITU example file
ITU_example_val = 810.1909872  #
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu1623.fade_duration_number_fades
ITU-Rpy Function D (s) A (dB) el (°) f (GHz) T_tot (s) ITU Validation ITU-Rpy Result Absolute Error Relative Error
models.itu1623.fade_duration_number_fades 30.0 12.51 20.33 30.0 315576.000000 810.190987 810.190987 -1.74e-08 -0.000
models.itu1623.fade_duration_number_fades 30.0 19.03 20.33 30.0 94672.800000 263.482270 263.482270 2.50e-08 0.000
models.itu1623.fade_duration_number_fades 10.0 7.64 20.33 14.5 31557.600000 187.739006 187.739006 -2.75e-09 -0.000
models.itu1623.fade_duration_number_fades 10.0 12.47 20.33 14.5 9467.280000 63.671567 63.671567 4.49e-09 0.000
models.itu1623.fade_duration_number_fades 1.0 11.59 37.63 39.6 157788.000000 3075.079280 3075.079280 -3.93e-07 -0.000
models.itu1623.fade_duration_number_fades 60.0 11.59 37.63 39.6 157788.000000 267.324031 267.324031 7.27e-09 0.000
models.itu1623.fade_duration_number_fades 300.0 11.59 37.63 39.6 157788.000000 97.965854 97.965854 3.98e-09 0.000
models.itu1623.fade_duration_number_fades 600.0 11.59 37.63 39.6 157788.000000 52.729218 52.729218 -4.59e-09 -0.000
models.itu1623.fade_duration_number_fades 1200.0 11.59 37.63 39.6 157788.000000 23.629371 23.629371 -1.14e-09 -0.000
models.itu1623.fade_duration_number_fades 1800.0 11.59 37.63 39.6 157788.000000 13.506736 13.506736 3.38e-09 0.000
models.itu1623.fade_duration_number_fades 3600.0 11.59 37.63 39.6 157788.000000 4.425827 4.425827 -2.96e-10 -0.000
models.itu1623.fade_duration_number_fades 10.0 1.10 30.00 14.0 395486.300000 1668.160083 1668.160083 -4.01e-07 -0.000
models.itu1623.fade_duration_number_fades 20.0 1.10 30.00 14.0 395486.300000 1349.672725 1349.672725 -2.26e-08 -0.000
models.itu1623.fade_duration_number_fades 30.0 1.10 30.00 14.0 395486.300000 1187.975446 1187.975446 -2.57e-07 -0.000
models.itu1623.fade_duration_number_fades 50.0 1.10 30.00 14.0 395486.300000 968.757536 968.757536 -3.67e-09 -0.000
models.itu1623.fade_duration_number_fades 70.0 1.10 30.00 14.0 395486.300000 819.405465 819.405465 3.02e-08 0.000
models.itu1623.fade_duration_number_fades 100.0 1.10 30.00 14.0 395486.300000 665.033744 665.033744 4.85e-08 0.000
models.itu1623.fade_duration_number_fades 200.0 1.10 30.00 14.0 395486.300000 401.326405 401.326405 4.08e-08 0.000
models.itu1623.fade_duration_number_fades 300.0 1.10 30.00 14.0 395486.300000 279.908154 279.908153 4.92e-08 0.000
models.itu1623.fade_duration_number_fades 500.0 1.10 30.00 14.0 395486.300000 165.425843 165.425843 8.01e-10 0.000
models.itu1623.fade_duration_number_fades 1000.0 1.10 30.00 14.0 395486.300000 70.889868 70.889868 2.78e-09 0.000
models.itu1623.fade_duration_number_fades 2000.0 1.10 30.00 14.0 395486.300000 25.893644 25.893644 1.10e-09 0.000
models.itu1623.fade_duration_number_fades 3000.0 1.10 30.00 14.0 395486.300000 13.314322 13.314322 -3.24e-09 -0.000
models.itu1623.fade_duration_number_fades 5000.0 1.10 30.00 14.0 395486.300000 5.309439 5.309439 2.62e-11 0.000
models.itu1623.fade_duration_number_fades 10.0 3.00 30.00 14.0 41152.940740 222.892169 222.892169 6.80e-09 0.000
models.itu1623.fade_duration_number_fades 20.0 3.00 30.00 14.0 41152.940740 180.377199 180.377199 -1.94e-08 -0.000
models.itu1623.fade_duration_number_fades 30.0 3.00 30.00 14.0 41152.940740 155.798554 155.798554 8.48e-09 0.000
models.itu1623.fade_duration_number_fades 50.0 3.00 30.00 14.0 41152.940740 122.626410 122.626410 -1.76e-08 -0.000
models.itu1623.fade_duration_number_fades 70.0 3.00 30.00 14.0 41152.940740 100.937752 100.937752 -4.38e-08 -0.000
models.itu1623.fade_duration_number_fades 100.0 3.00 30.00 14.0 41152.940740 79.327733 79.327733 -3.61e-09 -0.000
models.itu1623.fade_duration_number_fades 200.0 3.00 30.00 14.0 41152.940740 44.537187 44.537187 -4.29e-09 -0.000
models.itu1623.fade_duration_number_fades 300.0 3.00 30.00 14.0 41152.940740 29.606190 29.606190 9.51e-10 0.000
models.itu1623.fade_duration_number_fades 500.0 3.00 30.00 14.0 41152.940740 16.372608 16.372608 -6.17e-09 -0.000
models.itu1623.fade_duration_number_fades 1000.0 3.00 30.00 14.0 41152.940740 6.345620 6.345620 -2.44e-10 -0.000
models.itu1623.fade_duration_number_fades 2000.0 3.00 30.00 14.0 41152.940740 2.072255 2.072255 -2.60e-10 -0.000
models.itu1623.fade_duration_number_fades 3000.0 3.00 30.00 14.0 41152.940740 0.992754 0.992754 2.88e-10 0.000
models.itu1623.fade_duration_number_fades 5000.0 3.00 30.00 14.0 41152.940740 0.360170 0.360170 -5.10e-10 -0.000
models.itu1623.fade_duration_number_fades 10.0 6.00 30.00 14.0 8439.016398 54.389922 54.389922 -2.32e-09 -0.000
models.itu1623.fade_duration_number_fades 20.0 6.00 30.00 14.0 8439.016398 43.742582 43.742582 -4.12e-09 -0.000
models.itu1623.fade_duration_number_fades 30.0 6.00 30.00 14.0 8439.016398 37.083143 37.083143 -1.06e-09 -0.000
models.itu1623.fade_duration_number_fades 50.0 6.00 30.00 14.0 8439.016398 28.375238 28.375238 -2.50e-09 -0.000
models.itu1623.fade_duration_number_fades 70.0 6.00 30.00 14.0 8439.016398 22.860953 22.860953 1.48e-09 0.000
models.itu1623.fade_duration_number_fades 100.0 6.00 30.00 14.0 8439.016398 17.519794 17.519794 -4.73e-09 -0.000
models.itu1623.fade_duration_number_fades 200.0 6.00 30.00 14.0 8439.016398 9.300675 9.300675 -2.05e-10 -0.000
models.itu1623.fade_duration_number_fades 300.0 6.00 30.00 14.0 8439.016398 5.958399 5.958399 -4.47e-10 -0.000
models.itu1623.fade_duration_number_fades 500.0 6.00 30.00 14.0 8439.016398 3.131783 3.131783 3.96e-10 0.000
models.itu1623.fade_duration_number_fades 1000.0 6.00 30.00 14.0 8439.016398 1.124527 1.124527 2.15e-10 0.000
models.itu1623.fade_duration_number_fades 2000.0 6.00 30.00 14.0 8439.016398 0.337402 0.337402 -3.45e-10 -0.000
models.itu1623.fade_duration_number_fades 3000.0 6.00 30.00 14.0 8439.016398 0.153244 0.153244 -2.99e-10 -0.000
models.itu1623.fade_duration_number_fades 5000.0 6.00 30.00 14.0 8439.016398 0.051782 0.051782 -1.41e-10 -0.000
models.itu1623.fade_duration_number_fades 10.0 9.00 30.00 14.0 3073.432203 21.939310 21.939310 -2.27e-09 -0.000
models.itu1623.fade_duration_number_fades 20.0 9.00 30.00 14.0 3073.432203 17.506532 17.506532 -2.88e-09 -0.000
models.itu1623.fade_duration_number_fades 30.0 9.00 30.00 14.0 3073.432203 14.663494 14.663494 -4.45e-11 -0.000
models.itu1623.fade_duration_number_fades 50.0 9.00 30.00 14.0 3073.432203 11.019315 11.019315 2.95e-09 0.000
models.itu1623.fade_duration_number_fades 70.0 9.00 30.00 14.0 3073.432203 8.757618 8.757618 4.85e-10 0.000
models.itu1623.fade_duration_number_fades 100.0 9.00 30.00 14.0 3073.432203 6.605381 6.605381 -6.27e-11 -0.000
models.itu1623.fade_duration_number_fades 200.0 9.00 30.00 14.0 3073.432203 3.385196 3.385196 6.00e-10 0.000
models.itu1623.fade_duration_number_fades 300.0 9.00 30.00 14.0 3073.432203 2.119102 2.119102 1.39e-11 0.000
models.itu1623.fade_duration_number_fades 500.0 9.00 30.00 14.0 3073.432203 1.079042 1.079042 -2.46e-10 -0.000
models.itu1623.fade_duration_number_fades 1000.0 9.00 30.00 14.0 3073.432203 0.369475 0.369475 3.28e-10 0.000
models.itu1623.fade_duration_number_fades 2000.0 9.00 30.00 14.0 3073.432203 0.105187 0.105187 -4.43e-10 -0.000
models.itu1623.fade_duration_number_fades 3000.0 9.00 30.00 14.0 3073.432203 0.046225 0.046225 4.17e-10 0.000
models.itu1623.fade_duration_number_fades 5000.0 9.00 30.00 14.0 3073.432203 0.014949 0.014949 2.93e-10 0.000
models.itu1623.fade_duration_number_fades 10.0 12.00 30.00 14.0 1401.370018 10.757668 10.757668 1.22e-09 0.000
models.itu1623.fade_duration_number_fades 20.0 12.00 30.00 14.0 1401.370018 8.518435 8.518435 1.50e-09 0.000
models.itu1623.fade_duration_number_fades 30.0 12.00 30.00 14.0 1401.370018 7.070472 7.070472 1.35e-09 0.000
models.itu1623.fade_duration_number_fades 50.0 12.00 30.00 14.0 1401.370018 5.241774 5.241774 1.25e-09 0.000
models.itu1623.fade_duration_number_fades 70.0 12.00 30.00 14.0 1401.370018 4.123662 4.123662 3.04e-10 0.000
models.itu1623.fade_duration_number_fades 100.0 12.00 30.00 14.0 1401.370018 3.073520 3.073520 2.43e-10 0.000
models.itu1623.fade_duration_number_fades 200.0 12.00 30.00 14.0 1401.370018 1.534482 1.534482 4.00e-10 0.000
models.itu1623.fade_duration_number_fades 300.0 12.00 30.00 14.0 1401.370018 0.944261 0.944261 8.10e-11 0.000
models.itu1623.fade_duration_number_fades 500.0 12.00 30.00 14.0 1401.370018 0.469680 0.469680 -2.05e-10 -0.000
models.itu1623.fade_duration_number_fades 1000.0 12.00 30.00 14.0 1401.370018 0.155289 0.155289 3.79e-10 0.000
models.itu1623.fade_duration_number_fades 2000.0 12.00 30.00 14.0 1401.370018 0.042535 0.042535 2.64e-10 0.000
models.itu1623.fade_duration_number_fades 3000.0 12.00 30.00 14.0 1401.370018 0.018245 0.018245 3.68e-11 0.000
models.itu1623.fade_duration_number_fades 5000.0 12.00 30.00 14.0 1401.370018 0.005713 0.005713 2.17e-11 0.000
models.itu1623.fade_duration_number_fades 10.0 15.00 30.00 14.0 680.678272 5.528898 5.528898 -1.85e-10 -0.000
models.itu1623.fade_duration_number_fades 20.0 15.00 30.00 14.0 680.678272 4.346392 4.346392 1.30e-10 0.000
models.itu1623.fade_duration_number_fades 30.0 15.00 30.00 14.0 680.678272 3.581086 3.581086 -4.88e-10 -0.000
models.itu1623.fade_duration_number_fades 50.0 15.00 30.00 14.0 680.678272 2.625959 2.625959 -1.87e-10 -0.000
models.itu1623.fade_duration_number_fades 70.0 15.00 30.00 14.0 680.678272 2.048928 2.048928 -3.90e-10 -0.000
models.itu1623.fade_duration_number_fades 100.0 15.00 30.00 14.0 680.678272 1.512629 1.512629 4.59e-11 0.000
models.itu1623.fade_duration_number_fades 200.0 15.00 30.00 14.0 680.678272 0.739519 0.739519 -2.21e-11 -0.000
models.itu1623.fade_duration_number_fades 300.0 15.00 30.00 14.0 680.678272 0.448879 0.448879 -1.85e-10 -0.000
models.itu1623.fade_duration_number_fades 500.0 15.00 30.00 14.0 680.678272 0.219133 0.219133 2.98e-11 0.000
models.itu1623.fade_duration_number_fades 1000.0 15.00 30.00 14.0 680.678272 0.070456 0.070456 -2.13e-10 -0.000
models.itu1623.fade_duration_number_fades 2000.0 15.00 30.00 14.0 680.678272 0.018714 0.018714 -2.19e-10 -0.000
models.itu1623.fade_duration_number_fades 3000.0 15.00 30.00 14.0 680.678272 0.007874 0.007874 2.37e-10 0.000
models.itu1623.fade_duration_number_fades 5000.0 15.00 30.00 14.0 680.678272 0.002403 0.002403 -2.25e-10 -0.000


Function fade_duration_total_exceedance_time

The table below contains the results of testing function fade_duration_total_exceedance_time. The test cases were extracted from spreadsheet ITURP1623-1_fade_duration_params.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
D = 30.0  # (s)
A = 12.51  # (dB)
el = 20.33  # (°)
f = 30.0  # (GHz)
T_tot = 315576.0  # (s)

# Make call to test-function fade_duration_total_exceedance_time
itur_val = itur.models.itu1623.fade_duration_total_exceedance_time(D=D, A=A, el=el, f=f, T_tot=T_tot)

# Compute error with respect to value in ITU example file
ITU_example_val = 291467.215960567  # (s)
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu1623.fade_duration_total_exceedance_time
ITU-Rpy Function D (s) A (dB) el (°) f (GHz) T_tot (s) ITU Validation (s) ITU-Rpy Result (s) Absolute Error Relative Error
models.itu1623.fade_duration_total_exceedance_time 30.0 12.51 20.33 30.0 315576.00 291467.215961 291467.215961 -3.49e-10 -0.000
models.itu1623.fade_duration_total_exceedance_time 30.0 19.03 20.33 30.0 94672.80 86851.997600 86851.997600 3.93e-10 0.000
models.itu1623.fade_duration_total_exceedance_time 10.0 7.64 20.33 14.5 31557.60 30710.632581 30710.632581 -4.00e-11 -0.000
models.itu1623.fade_duration_total_exceedance_time 10.0 12.47 20.33 14.5 9467.28 9180.643332 9180.643332 4.17e-10 0.000
models.itu1623.fade_duration_total_exceedance_time 1.0 11.59 37.63 39.6 157788.00 153240.459707 153240.459707 -3.20e-10 -0.000
models.itu1623.fade_duration_total_exceedance_time 60.0 11.59 37.63 39.6 157788.00 134068.283701 134068.283701 -5.82e-11 -0.000
models.itu1623.fade_duration_total_exceedance_time 300.0 11.59 37.63 39.6 157788.00 111287.301883 111287.301883 2.91e-10 0.000
models.itu1623.fade_duration_total_exceedance_time 600.0 11.59 37.63 39.6 157788.00 92081.221388 92081.221388 3.93e-10 0.000
models.itu1623.fade_duration_total_exceedance_time 1200.0 11.59 37.63 39.6 157788.00 67696.250744 67696.250744 1.46e-11 0.000
models.itu1623.fade_duration_total_exceedance_time 1800.0 11.59 37.63 39.6 157788.00 52936.430347 52936.430347 -4.44e-10 -0.000
models.itu1623.fade_duration_total_exceedance_time 3600.0 11.59 37.63 39.6 157788.00 30577.895884 30577.895884 5.31e-10 0.000


Function fade_duration_probability

The table below contains the results of testing function fade_duration_probability. The test cases were extracted from spreadsheet ITURP1623-1_fade_duration_params.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
D = 30.0  # (s)
A = 12.51  # (dB)
el = 20.33  # (°)
f = 30.0  # (GHz)

# Make call to test-function fade_duration_probability
itur_val = itur.models.itu1623.fade_duration_probability(D=D, A=A, el=el, f=f)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.18384158899999997  #
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu1623.fade_duration_probability
ITU-Rpy Function D (s) A (dB) el (°) f (GHz) ITU Validation ITU-Rpy Result Absolute Error Relative Error
models.itu1623.fade_duration_probability 30.0 12.51 20.33 30.0 0.183842 0.183842 -4.29e-10 -0.000
models.itu1623.fade_duration_probability 30.0 19.03 20.33 30.0 0.184234 0.184234 -3.17e-10 -0.000
models.itu1623.fade_duration_probability 10.0 7.64 20.33 14.5 0.488779 0.488779 -3.19e-11 -0.000
models.itu1623.fade_duration_probability 10.0 12.47 20.33 14.5 0.489294 0.489294 -9.73e-11 -0.000
models.itu1623.fade_duration_probability 1.0 11.59 37.63 39.6 1.000000 1.000000 0.00e+00 0.000
models.itu1623.fade_duration_probability 60.0 11.59 37.63 39.6 0.086932 0.086932 8.69e-11 0.000
models.itu1623.fade_duration_probability 300.0 11.59 37.63 39.6 0.031858 0.031858 2.19e-10 0.000
models.itu1623.fade_duration_probability 600.0 11.59 37.63 39.6 0.017147 0.017147 -2.10e-10 -0.000
models.itu1623.fade_duration_probability 1200.0 11.59 37.63 39.6 0.007684 0.007684 -3.02e-10 -0.000
models.itu1623.fade_duration_probability 1800.0 11.59 37.63 39.6 0.004392 0.004392 -3.47e-10 -0.000
models.itu1623.fade_duration_probability 3600.0 11.59 37.63 39.6 0.001439 0.001439 -8.83e-11 -0.000


Function fade_duration_cummulative_probability

The table below contains the results of testing function fade_duration_cummulative_probability. The test cases were extracted from spreadsheet ITURP1623-1_fade_duration_params.csv from the ITU Validation examples file (rev 5.1). In addition to the input-arguments, expected result (ITU Validation), and ITU-Rpy computed result (ITUR-py Result), the absolute and relative errors are shown. Each test case is color-coded depending on the magnitude of the errors (green = pass, errors are negligible, red = fail, relative error is above 0.01%).

In addition, the code snippet below shows an example of how to generate the first row of the results in the table:

import itur

# Define input attributes
D = 30.0  # (s)
A = 12.51  # (dB)
el = 20.33  # (°)
f = 30.0  # (GHz)

# Make call to test-function fade_duration_cummulative_probability
itur_val = itur.models.itu1623.fade_duration_cummulative_probability(D=D, A=A, el=el, f=f)

# Compute error with respect to value in ITU example file
ITU_example_val = 0.923603873  #
error = ITU_example_val - itur_val.value
error_rel = error / ITU_example_val * 100  # (%)
Validation results models.itu1623.fade_duration_cummulative_probability
ITU-Rpy Function D (s) A (dB) el (°) f (GHz) ITU Validation ITU-Rpy Result Absolute Error Relative Error
models.itu1623.fade_duration_cummulative_probability 30.0 12.51 20.33 30.0 0.923604 0.923604 -4.27e-10 -0.000
models.itu1623.fade_duration_cummulative_probability 30.0 19.03 20.33 30.0 0.917391 0.917391 -2.54e-10 -0.000
models.itu1623.fade_duration_cummulative_probability 10.0 7.64 20.33 14.5 0.973161 0.973161 -4.50e-11 -0.000
models.itu1623.fade_duration_cummulative_probability 10.0 12.47 20.33 14.5 0.969723 0.969723 -3.27e-10 -0.000
models.itu1623.fade_duration_cummulative_probability 1.0 11.59 37.63 39.6 0.971179 0.971179 2.26e-10 0.000
models.itu1623.fade_duration_cummulative_probability 60.0 11.59 37.63 39.6 0.849674 0.849674 -4.01e-10 -0.000
models.itu1623.fade_duration_cummulative_probability 300.0 11.59 37.63 39.6 0.705296 0.705296 6.77e-11 0.000
models.itu1623.fade_duration_cummulative_probability 600.0 11.59 37.63 39.6 0.583576 0.583576 1.26e-10 0.000
models.itu1623.fade_duration_cummulative_probability 1200.0 11.59 37.63 39.6 0.429033 0.429033 3.49e-10 0.000
models.itu1623.fade_duration_cummulative_probability 1800.0 11.59 37.63 39.6 0.335491 0.335491 3.21e-10 0.000
models.itu1623.fade_duration_cummulative_probability 3600.0 11.59 37.63 39.6 0.193791 0.193791 1.20e-11 0.000


F.A.Q.

I cannot install Basemap

This happens most likely because you are using python version > 3.X. You can try to install from conda-forge conda install -c conda-forge cartopy or, if you are using Windows, using the appropriate pre-compiled wheels file from this webpage. Once you download the .whl file you can install it using pip install name_of_whl_file.whl.

The first time I run ITU-Rpy is considerable slower

ITU-Rpy loads in memory several datasets upon first execution. This process might take up to 30 seconds. Once that datasets are loaded into memory ITU-Rpy uses cached versions to reduce execution time.

I cannot operate with the values returned by ITU-Rpy

ITU-Rpy returns Quantity objects, which consist of a value and a unit. Only quantities with compatible dimensions can be added / subtracted.

import itur
d1 = 300 * itur.u.m
d2 = 0.2 * itur.u.km

print(d1 + d2)     # prints 500.0 m

p1 = 1013 * itur.u.hPa
print(d1 + p1)     # Generates an error.

The user can transform between compatible units using the .to() method.

print(d1.to(itur.u.km))    # prints 0.3 km

One can access to the values and units using the .value and .unit methods respectively. Some matplotlib functions accept Quantities as inputs (plt.plot, plt.scatter), whereas others require plain values (plt.bar).

I discovered a bug/have criticism or ideas on ITU-Rpy. Where should I report to?

ITU-Rpy uses the GitHub issue-tracker to take care of bugs and questions. If you experience problems with ITU-Rpy, try to provide a full error report with all the typical information (OS, version, console-output, minimum working example, …). This makes it a lot easier to reproduce the error and locate the problem.

Contributing to ITU-Rpy

We welcome all contributions to grow and improve ITU-Rpy. There are many ways you can contribute, be it filing bug reports, writing new documentation or submitting patches for new or fixed behavior. This guide provides everything you need to get started.

Writing code

The ITU-Rpy source code is managed using Git and is hosted on GitHub. The recommended way for new contributors to submit code to ` ITU-Rpy <https://github.com/inigodelportillo/ITU-Rpy/>`_ is to fork this repository and submit a pull request after committing changes to their fork. The pull request will then need to be approved by one of the core developers before it is merged into the main repository.

Coding style

Please follow these guidelines when writing code for ITU-Rpy:

  • Follow the PEP 8 Python style guide.
  • Try to use the same code style as used in the rest of the project.
  • New features and recommendations should be documented. Include examples and use cases where appropriate.
  • If possible, add appropriate unit tests for validation.

Bug Reports and Feature Requests

If you have encountered a problem with ITU-Rpy or have an idea for a new feature, please submit it to the GitHub issue-tracker.

Including or providing a link to the source files involved may help us fix the issue. If possible, try to create a minimal project that produces the error and post that instead.

Improving Documentation

ITU-Rpy welcomes documentation contributions. Documentation on ITU-Rpy falls into the following categories:

  • API reference: The API reference docs are generated from docstrings in the ITU-Rpy source code.
  • Narrative documentation: These are tutorials and other writing that’s not part of the ITU-Rpy source code. This documentation is in the ITU-Rpy/docs folder of the GitHub repository.

License

This program is free software: you can redistribute it and/or modify it under the terms of the MIT license (see below).

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

If you use ITU-Rpy in one of your research projects, please use the citation provided below.

MIT

Copyright (c) 2016 Inigo del Portillo, Massachusetts Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Citation

If you use ITU-Rpy in one of your research projects, please cite it as:

@misc{iturpy-2017,
      title={ITU-Rpy: A python implementation of the ITU-R P. Recommendations to compute
         atmospheric attenuation in slant and horizontal paths.},
      author={Inigo del Portillo},
      year={2017},
      publisher={GitHub},
      howpublished={\url{https://github.com/inigodelportillo/ITU-Rpy/}}
}

Contact

ITU-Rpy is developed and maintained by Inigo del Portillo (inigo.del.portillo@gmail.com).

ITU-Rpy uses the GitHub issue-tracker to take care of bugs and questions. If you experience problems with ITU-Rpy, try to provide a full error report with all the typical information (OS, version, console-output, minimum working example, …). This makes it a lot easier to reproduce the error and locate the problem.

Citation

If you use ITU-Rpy in one of your research projects, please cite it as:

@misc{iturpy-2017,
      title={ITU-Rpy: A python implementation of the ITU-R P. Recommendations to compute
         atmospheric attenuation in slant and horizontal paths.},
      author={Inigo del Portillo},
      year={2017},
      publisher={GitHub},
      howpublished={\url{https://github.com/inigodelportillo/ITU-Rpy/}}
}

Indices and tables

Other

ITU-Rpy is mainly written in Python 3 and continuously tested with Python 3.5-3.9.

ITU-Rpy has the following dependencies: numpy, scipy, pyproj, and astropy. Installing cartopy and matplotlib is recommended to display results in a map.